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Campinas, 13083-851, Brazil

Abstract

Interactive image segmentation has considerably evolved from techniques that do not learn the parameters of the

model to methods that pre-train a model and adapt it from user inputs during the process. However, user control over

segmentation still requires significant improvements to avoid that corrections in one part of the object cause errors in

other parts. We address this problem by presenting Grabber — a tool to improve convergence (user control) in inter-

active image segmentation. Grabber is thought for integration with some other method. From a given segmentation

mask, Grabber quickly estimates anchor points in one orientation along the boundary of the mask and delineates an

optimum contour constrained to pass through those points. The user can control the process by adding, removing,

and moving anchor points. Grabber can also incorporate extra object information from the main approach to improve

boundary delineation. We integrate Grabber with two recent methods, a region-based approach and a pixel classifi-

cation method based on deep neural networks. Extensive experiments with robot users on two datasets show in both

cases that Grabber can significantly improve convergence, with faster delineation, higher effectiveness, and less user

effort.
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1. Introduction

Interactive image segmentation requires object local-

ization, enhancement, delineation, and verification. Ob-

ject localization may involve the indication of interior

and exterior markers, points along the object boundary, a

bounding box around the object, the information about its

pose, and its approximate position in the image domain,

for instance. Object enhancement improves the contrast

between object and background to facilitate their separa-

tion (e.g., an object saliency map, a gradient image). Ob-
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ject delineation defines the precise spatial extension of the

object in the image and it can usually improve when using

a suitable object enhancement. Object verification may be

done by the user or by optimizing some criterion function.

As accurate segmentation rarely works from a single in-

put action, the user usually verifies the result and takes

actions for correcting errors, such that all previous steps

can be improved along with multiple user interventions.

Object localization and verification are better per-

formed by humans while machines usually outperform

humans in object enhancement and delineation. An ideal

method for interactive image segmentation should ex-

plore the complementary abilities of humans and ma-

chines to minimize user effort while maintaining complete

user control over the segmentation process (Falcão et al.
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(1998)). For that, the user’s actions to correct segmenta-

tion should be effective, not causing errors in other parts

of the object wherein the result is already correct.

Interactive image segmentation methods have consid-

erably evolved in the last years. Initially, the meth-

ods did not learn the parameters of the segmentation

model (Beucher (1979); Kass et al. (1988)). Many

methods then started learning a model but fixing it dur-

ing segmentation (Falcão et al. (1998); Cootes et al.

(2001); Miranda et al. (2010); Xu et al. (2016); Maninis

et al. (2018)). Other approaches can learn and update a

model from user inputs during segmentation (Rother et al.

(2004); Yang et al. (2010); Spina et al. (2012, 2014); Bra-

gantini et al. (2018)) and several recent ones start from a

pre-trained model that is adapted from user inputs during

segmentation (Jang and Kim (2019); Sofiiuk et al. (2020);

Kontogianni et al. (2019)).

However, while classical approaches, such as live-wire

and live-lane (Falcão et al. (1998)), can provide consid-

erable user control over the segmentation process at the

cost of a higher user effort in more complex boundaries,

the existing methods still lack user control during seg-

mentation correction. See an example in Figures 1(a)-

(d) for a recent method, named feature Back-propagating

Refinement Scheme (fBRS), based on deep neural net-

works (Sofiiuk et al. (2020)).

In this paper, we address the above problem by pre-

senting Grabber — a tool to improve convergence (user

control) in interactive image segmentation. Grabber

is inspired by the higher user control offered by live-

wire (Falcão et al. (1998)), but it improves it in several

aspects. First, Grabber can estimate anchor points from

a segmentation mask and sort the points in one bound-

ary orientation, rather than requiring the user to provide

a sequence of anchor points in a given order along the

boundary. This feature allows us to integrate Grabber with

other automatic and interactive methods. Object delin-

eation is obtained by an optimum contour constrained to

pass through those anchor points, and Grabber can use ex-

tra object information from the main approach to further

improve boundary delineation. Second, Grabber allows

the user to control segmentation in any part of the bound-

ary by adding, removing, and moving anchor points.

Although, it is not explored here, different definitions

of connectivity strength between anchor points may be

adopted in parts of the boundary or for distinct types of

boundaries (Miranda et al. (2012); Barreto et al. (2016);

Condori et al. (2017)). In order to demonstrate the im-

pact of Grabber to increase convergence in interactive seg-

mentation, we integrate it with two recent approaches,

a pixel classification method based on deep neural net-

works, fBRS (Sofiiuk et al. (2020)), and a region-based

method, named Dynamic Trees (DT, Bragantini et al.

(2018); Falcão and Bragantini (2019)), that relies on com-

binatorial image analysis. Thus, Grabber is not meant to

compete with other methods but to improve them, as soon

as the user experiences difficulty in convergence or real-

izes that Grabber can complete segmentation faster than

the main approach. Figures 1(e)-(f) illustrate its poten-

tial to improve interactive segmentation, when integrated

with fBRS.

In summary, as main contributions, this paper presents

a tool, named Grabber, to improve convergence in interac-

tive segmentation, when integrated with other approaches;

and two hybrid methods, fBRS-Grabber and DT-Grabber,

that result from that integration.

2. Related Works

Methods for interactive image segmentation may be di-

vided into connectivity-based and classification-based ap-

proaches, being connectivity-based methods further di-

vided into region-based and contour-based techniques. In

region-based approaches (Udupa and Saha (2003); Grady

(2006); Boykov and Funka-Lea (2006); Couprie et al.

(2010); Bragantini et al. (2018)), the user may select in-

ternal and/or external seeds (markers, strokes), such that

the object pixels can be connected to their internal seeds

by sequences of adjacent elements. Several approaches

interpret an image as a graph, whose vertices are the

pixels and edges are defined by adjacent elements, such

that the object may result from an optimum graph cut

with seeds as hard constraints (Boykov and Funka-Lea

(2006)), from an optimum-path forest rooted at internal

markers (Bragantini et al. (2018)), from a random walker

starting from the same initial pixels (Grady (2006)), etc.

In contour-based approaches, a contour model may be de-

formed to define an object’s boundary (Kass et al. (1988);

Cootes et al. (2001)) or the boundary may result from a

sequence of optimum segments (Falcão et al. (1998); Mi-

randa et al. (2012); Barreto et al. (2016); Condori et al.

(2017)). There are also hybrid approaches that combine
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(a) (b) (c)

(d) (e) (f)

Figure 1: (a) Original image with ground-truth segmentation. (b), (c), (d) Results of fBRS (Sofiiuk et al. (2020)) after 1, 6, and 25 iterations,

respectively, of an oracle user that inserts internal (blue) and external (yellow) points. One can see that corrections in (c) ruin correct parts of the

result in (b). (e) Grabber can improve the result from iteration 1 of fBRS, delineating an optimum contour constrained to pass through estimated

anchor points (orange). (f) By letting the user move, add, and remove anchor points, Grabber convergences faster with higher accuracy in 13 less

user interventions.

advantages from contour-based and region-based meth-

ods (Yang et al. (2010); Spina et al. (2014)). In some ap-

proaches, object information is obtained from user-drawn

markers (Miranda et al. (2010); Spina et al. (2012, 2014))

— a feature that relies on pixel classification to improve

delineation when the image is interpreted as a graph. The

classifier creates a fuzzy object (saliency) map, which en-

hances the edge weights that separate object and back-

ground.

Pixel classifiers are the core of classification-based

methods. In this case, the object is usually defined regard-

less the connectivity among its pixels 1 and, due to that,

several approaches adopt regularization procedures (Xu

et al. (2017), Wang et al. (2019)), especially in automatic

segmentation (Chen et al. (2017)). As a trend, these ap-

proaches normally use deep neural networks, pre-trained

on a large set with previously segmented images, and let

the user add markers (clicks) on new images, as constrains

1In some applications, such as land-use classification in remote sens-

ing images, it is better to not force connectivity between markers and

pixels, which favors the use of classification-based approaches.

to correct segmentation (Xu et al. (2016); Maninis et al.

(2018)). The object is usually defined by thresholding a

fuzzy object map of the network, which explains the dis-

connected components in Figure 1(c). The most recent

approaches can adapt the network from user inputs during

segmentation (Jang and Kim (2019); Kontogianni et al.

(2019); Sofiiuk et al. (2020)). In (Sofiiuk et al. (2020), the

positions and distance maps of internal and external clicks

are used to crop a region around the object and adapt the

initial model for each specific segmentation task. This can

improve the fuzzy object map but still does not solve the

connectivity problem, as shown in Figure 1(c).

A main problem is the absence of user control dur-

ing interactive segmentation (Figure 1). As a contour-

based tool, Grabber can continue interactive segmenta-

tion from the mask obtained at any stage of another ap-

proach, with considerably higher user control, defining

the object as a connected component, increasing effec-

tiveness, and reducing user effort to complete the process,

as we will show. It is worth noting that most contour-

based methods cannot continue segmentation from an-

other method (Falcão et al. (1998); Miranda et al. (2012);
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Barreto et al. (2016); Condori et al. (2017)) and some pro-

vide very limited or no user control over delineation (Kass

et al. (1988); Cootes et al. (2001)). User control is also

addressed in hybrid connectivity-based approaches (Yang

et al. (2010)) with different types of markers, but its effec-

tiveness in boundary delineation with reduced user effort

has not been validated.

3. Grabber

For a given segmentation mask, Grabber can estimate

anchor points along the boundary of the mask and let the

user manipulate them: add, remove, and move points.

The initial anchor points are obtained in a desired order

(clockwise or anti-clockwise) using the Douglas-Peucker

algorithm (Douglas and Peucker (1973)) with a curvature-

approximation threshold ε. It transforms the contour of

the mask into line segments and uses their extreme points

as anchors. Grabber then estimates the object boundary

as an optimum contour constrained to pass through those

anchor points. For that, Grabber uses the Image Foresting

Transform (IFT) algorithm (Falcão et al. (2004)).

The image is interpreted as a graph G = (V, E, I), where

the set V of vertices contains the image pixels, I : V → Rk

is the image function that maps each vertex to a fea-

ture vector in Rk space (e.g., the L*a*b* color space),

and the edge set E with pairs of adjacent pixels (e.g., 8-

neighbors). A path πu in G is a sequence of adjacent ver-

tices with terminus u, being πu = 〈u〉 a trivial path and

πu · 〈u, v〉 the extension of πu by an edge 〈u, v〉. For a given

path-cost function f (πu), the IFT algorithm minimizes a

path-cost map C(u) by assigning to every u ∈ V the cost

of an optimum path with terminus u. In this process, it

creates an optimum-path forest P — an acyclic map that

assigns to every u ∈ V a predecessor P(u) in the optimum

path P∗(u) with terminus u or a marker nil < V , when u is

a root (starting vertex) of the map. Note that the vertices

of the path P∗(u) can be accessed backwards by following

the predecessors recursively until its root vertex.

Let S = {s1, s2, . . . , sn} ⊂ V be the set of anchor points

in a given order, such that si ≺ si+1, i = 1, 2, . . . , n − 1.

The IFT algorithm should compute one optimum contour

L constrained to pass through the anchor points by fol-

lowing their order in S. This will require n executions of

the IFT algorithm to find minimum-cost segments from si

to si+1, i = 1, 2, . . . , n−1, and then from sn to s1. The setL

is empty before the first execution. After each execution

1 ≤ i < n, L returns with the vertices of the optimum path

P∗(si+1) with terminus si+1 and root s1. For the last execu-

tion n, s1 is removed from L in order to close the contour

as an optimum path P∗(s1) with root in a vertex s whose

P(s) = s1. The path-cost function f may be defined as

f (〈u〉) =

{

0 if u = s1 and L = ∅,

+∞ if u ∈ V \ L,

f (πu · 〈u, v〉) = f (πu) + wI(u, v), (1)

wI(u, v) = exp

(

−
‖I(lu,v), I(ru,v)‖2

σI

)

(2)

where ‖., .‖2 is the Euclidean norm, lu,v and ru,v are the

left and right vertices of an edge (u, v) ∈ E, respectively,

and σI > 0 is a constant. It is expected lower values

of wI(u, v) on the object’s border than in the immediate

neighborhood inside and outside it. The parameter σI

controls the importance of color differences between the

left and right sides of the edges.

Algorithm 1 presents the contour-based object delin-

eation of Grabber. In Lines 1-2, it executes the trivial

path-cost initialization of Equation 1, being all paths ini-

tially trivial. The main loop (Lines 3-5) computes the

minimum-cost segments from si to si+1, i = 1, 2, . . . , n−1.

It then removes s1 from L in Line 6, updating its trivial

path cost according to Equation 1, to close the contour in

Line 7. Every time an optimum segment is computed, it

is added to the contour in L.

Algorithm 1. – Contour-based segmentation algorithm

Input: Graph G = (V, E, I) and anchor-point set S.

Output: Optimum object contour L.

Auxiliary: Path-cost map C and predecessor map P.

1. For each u ∈ V do C(u)← +∞ and P(u)← u.

2. L ← ∅, i← 1, and C(s1)← 0.

3. While i < n do

4. (C, P,L)← Optimum-Segment(G, si, si+1,C, P,L).

5. i← i + 1

6. L ← L \ {s1} and C(s1)← +∞.

7. (C, P,L)← Optimum-Segment(G, sn, s1,C, P,L)

8. Return L.

Algorithm 2 shows how to compute and concatenate

optimum segments in L. Line 1 inserts the source s in

a priority queue Q and in an auxiliary set U. Set U
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must contain all vertices inserted in Q during the algo-

rithm in order to restore the costs of trivial paths, accord-

ing to Equation 1, for the subsequent execution. Note that

the source s is always inserted in Q with optimum cost

C(P∗(s)), as obtained in the previous execution. The op-

timum segments already in L have lower costs than that

and the remaining vertices are available to be conquered

by a new segment from s. The main loop (Lines 2-17)

removes the vertex u with minimum path cost from Q in

Line 3. If u is the destination point t (Line 4), the algo-

rithm concatenates the previous segments to the optimum

segment from s to t (Lines 5-7), restores the trivial paths

and their costs according to Equation 1 (Lines 8-9), and

resets Q andU to end the loop. While u is not the destina-

tion point, the algorithm visits its adjacent vertices (Lines

12-17) to which the extended paths πu · 〈u, v〉 with cost

tmp = f (πu · 〈u, v〉) (Line 13) may be lower than the cost

C(v) = f (πv) of the current path πv. If this is the case,

then path πv is replaced by πu · 〈u, v〉 when P(v) is set to u

in Line 16. The cost C(v) and status of v in Q and U are

updated accordingly (Lines 15-17).

Algorithm 2. – Optimum-segment finding algorithm

Input: Graph G = (V, E, I), source s ∈ V , destination

t ∈ V , previous path-cost map C, predecessor

map P, and contour set L.

Output: Updated path-cost map C, predecessor map P,

and contour set L.

Auxiliary: Priority queue Q = ∅ and setU = ∅.

1. Q ← Q ∪ {s}, andU ← U ∪ {s}.

2. While Q , 0 do

3. Q ← Q \ {u} such that u = arg minv∈Q{C(v)}.

4. If u = t then

5. While u , s do

6. L ← L ∪ {u} and u← P(u).

7. L ← L ∪ {s}.

8. For each u ∈ U \ L do

9. C(u)← +∞ and P(u)← nil.

10. Q ← ∅ and L ← ∅

11. Else

12. For each v | (u, v) ∈ E and C(v) > C(u) do

13. tmp← C(u) + wI(u, v)

14. If tmp < C(v) then

15. If v ∈ Q then Q ← Q \ {v}.

16. C(v)← tmp, P(v)← u,

17. Q ← Q ∪ {v}, andU ← U ∪ {v}.

18. Return (C, P,L).

4. Integration and Usage of Grabber

As a contour-based tool, Grabber can be integrated with

other methods to speed up convergence. The idea is to

start interactive segmentation with one main approach and

use Grabber to conclude the process by the time the user

observes that either the main method is requiring much

user effort to achieve the desired result or Grabber could

conclude the process faster from the current output of the

main approach. This integration also allows us to explore

object information from the main approach, making Grab-

ber more effective.

Figure 2 illustrates one example where the user draws

internal and external markers (Figure 2(b)) to separate

the object in Figure 2(a) from the background by using

Dynamic Trees (DT, Bragantini et al. (2018); Falcão and

Bragantini (2019)). DT is a region-based method that

can compute optimum-path forests rooted at markers in

multiple objects, such that each object is defined by the

forest of its internal markers. The main difference be-

tween DT and other IFT-based methods (e.g., a watershed

transform) is that the edge weights of its path-cost func-

tion are computed on-the-fly, based on mid-level prop-

erties of the growing trees. Its advantages over region-

based and classification-based methods have been demon-

strated in (Bragantini et al. (2018); Falcão and Bragan-

tini (2019)). We demonstrate in Section 5 that the in-

tegration of Grabber and DT can improve convergence.

Figure 2(c) shows the result of Grabber when the algo-

rithms of Section 3 are used as explained. The segmenta-

tion mask, however, allows to compute Gaussian Mixture

Models (GMMs) from the interior (Figure 2(d)) and ex-

terior (Figure 2(e)) of the mask, and use this information

to replace the edge-weight function wI(u, v) in Equation 2

by the one below.

wG(u, v) = wI(u, v) exp

(

−

∑

λ∈{0,1} |Dλ(ru,v) − Dλ(lu,v)|

σG

)

(3)

where Dλ(.) are the Gaussian density maps for each la-

bel λ ∈ {0, 1} (i.e., background and object), and σG > 0

is a constant. Figure 2e shows the final result of Grabber

using Equation 4 and after manipulating anchor points.

The density maps can be updated after each iteration of

Grabber. The choices of σI in wI and σG are important to
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control the balance between local image and object infor-

mation.

(a) (b) (c)

(d) (e) (f)

Figure 2: Grabber: (a) input image; (b) initial segmentation with

DT (Bragantini et al. (2018)) from object (blue) and background (pink)

markers; (c) the resulting object contour from Grabber; Gaussian den-

sity maps for the (d) object and (e) background; (f) final segmentation

with Grabber, after anchor-point manipulation.

The initial number of anchor points in Grabber is still

an empirical parameter, but one can explore gradient and

salience information along the border of the mask to esti-

mate more effective points. We are choosing points based

on a simplification degree of the original contour. When

the user clicks on one anchor point vk, the paths from the

previous point vk−1 and to the next point vk+1 are rede-

fined by running Algorithm 2 on the affected segments

(Figure 3). Therefore, Grabber can limit user interaction

to a segment of the object border providing the desired

control over the correction process.

(a) (b)

Figure 3: Contour-based correction of a border section. (a) Initial seg-

mentation with DT (Bragantini et al. (2018)) followed by Grabber. (b)

The middle anchor point is moved to the object’s border and Grabber

fixes delineation in red. The previous segment (error) is shown in cyan.

When a new anchor point is added by the user, the con-

tour is not immediately redefined since the user might

want to move the point to a better location. A good prac-

tice is showed in Figure 4. If the user wants to improve a

contour section and keep the rest unchanged, it is best to

add points at the extremities of that section and then make

further point manipulation inside the section.

(a) (b) (c)

Figure 4: A good practice in Grabber: (a) initial contour for correction;

(b) points are added to both extremities of a contour section; (c) a new

point is added in that section and moved to a better location; (d) the

resulting correction in red with the previous wrong segment in cyan.

Note that the rest of the contour remains unchanged.

Object information may be obtained by different strate-

gies. In Spina et al. (2012), the authors present an intel-

ligent approach to select the pixels from internal and ex-

ternal markers that best discriminate the object and back-

ground for image enhancement as an object saliency map.

Live Markers (Spina et al. (2014)) uses this method for

edge weight estimation in the IFT algorithm. It also al-

lows the user to draw live-wire segments on the border of

the object, creating internal and external markers around

them, but the segmentation is always a watershed trans-

form from those markers. Another possibility is to use the

object map that is improved along with internal and ex-

ternal clicks during segmentation by fBRS (Sofiiuk et al.

(2020)). Figure 5 illustrates the object maps obtained by

the method in (Spina et al. (2012)), when running Live

Markers, by GM models from the segmentation mask of

Live Markers (map D1 in Equation 4), and by the net-

work in fBRS. In general, Grabber can improve contour-

based delineation when it incorporates object information

in edge-weight estimation. Assuming that O(u) is the ob-

ject map value from some of these approaches, Equation 2

may be replaced by

wC(u, v) = wI(u, v) exp

(

−
|O(ru,v) − O(lu,v)|

σO

)

(4)

5. Results and Discussion

This section evaluates Grabber associated with two

methods, fBRS (Sofiiuk et al. (2020)) and DT (Bragantini

et al. (2018)). The resulting approaches are called fBRS-

Grabber and DT-Grabber. We indicate the edge weight
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(a) (b)

(c) (d)

Figure 5: (a) Original image. Object saliency maps by (b) GM model

from a large sheep mask (red boundary), (c) the network in fBRS from

a single click (red dot), and (d) the method in Spina et al. (2012) from

background (cyan) and foreground (red) markers.

function used in each case — e.g., DT-Grabber-wI when

Grabber uses Equation 2.

The experiments used an Intel(R) Xeon(R) CPU E5-

2620 v4 @ 2.10GHz CPU and a Titan X with 12 GB

of memory. We adopted a stress experiment similar to

the convergence analysis from Sofiiuk et al. (2020). It

measures the number of interactions required to achieve a

fixed threshold of Intersection over Union (IoU) (Xu et al.

(2016); Maninis et al. (2018); Jang and Kim (2019); Sofi-

iuk et al. (2020)) — i.e., the number of clicks/anchor ma-

nipulations to achieve 0.95 IoU is denoted by NoC@0.95

and we count the number of images to which the methods

could not achieve 0.95 IoU in 50 interactions. The ex-

periments used the testing set of Berkeley (Martin et al.

(2001)) from McGuinness and O’connor (2010) and a

subset provided by Jang and Kim (2019), with 10 per-

cent of the images (video frames) from DAVIS (Perazzi

et al. (2016)). The ground-truths of the datasets where

pre-processed, removing disconnected objects and holes

to facilitate the experiments with a proposed robot for

Grabber (Section 5.1).

ResNet101, the network used in fBRS, was pre-trained

on SBD (Hariharan et al. (2011)), and it is used as pro-

vided by Sofiiuk et al. (2020). The robot user for fBRS

and DT is the same (Xu et al. (2016)). As it adds inter-

nal and external clicks, fBRS can crop a region around

the object and use distance maps of the clicks to improve

an object saliency map, solving segmentation by thresh-

olding the map. In DT, the clicks define the object as an

optimum-path forest rooted at the internal ones.

We switched from fBRS (or DT) to Grabber when the

IoU changed less than 1% for three consecutive interac-

tions and Grabber started without resetting the number

of interactions. Its parameters were optimized by grid-

search on 150 random images from SBD (Hariharan et al.

(2011)), resulting ε = 100, σI = 0.5, and σO = 0.25.

5.1. Proposed Robot User for Grabber

Grabber’s robot starts locating a reference pixel for

each anchor. The reference pixel is the closest one to

the anchor on the ground-truth border. It then locates the

closest point to each reference pixel on the segmentation’s

border. If an anchor is not the closest point to its own ref-

erence pixel, the robot removes that anchor (Figure 6(a)-

(b)). This behavior imitates the action of a user removing

anchors from regions where Grabber should update the

contour without adding new anchors. The distance is the

length of a geodesic path in the component between the

GT and the segmentation mask, thus avoiding tangling the

contours in non-convex shapes.

After that, the robot lists all pixels at which the GT and

segmentation overlap. For every pair of consecutive inter-

section points between the overlapping GT and segmen-

tation borders, it computes the area between the borders

and try to correct these regions in a decreasing order of

area.

Given the current largest and incorrect region, the robot

adds a pair of anchors on its extremities to limit the

changes to the local contour, if needed, just as the strategy

shown in Figure 4. This is a key factor to maintain user

control over the segmentation process. Then, the robot

moves the furthest anchor from its reference pixel onto

the GT border (Figure 6(b)-(c) and (d)-(e)). If there are

no anchors on the segment, the robot adds one anchor and

moves it (Figure 6(c)-(d)).

To better emulate a real user, the anchor target is around

the middle of the GT segment on the pixel with the weak-

est gradient. Thus, imposing a constraint where the differ-

ence between foreground and background could be non-

existent, Figure 6(d).

5.2. Results

Tables 1-3 show that the integration of fBRS and DT

with Grabber can improve convergence and, at the same
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(a) (b) (c) (d) (e)

Figure 6: Example of robot iterations. The blue, orange and purple lines

represent current, desired, and removed contour segments, respectively,

and the red dots are anchors. Red, blue, and green arrows point to po-

sitions where anchors should be deleted, moved, or added. (a) Initial

segmentation; (b) after deleting two anchors; (c) after moving an an-

chor; (d) after adding an anchor; (e) after moving the anchor added in

the previous iteration.

time, reduce the average response time of the interactions,

and increase the mean IoU. Table 1 shows that Grabber

can considerably reduce to almost half the number of im-

ages to which the main methods could not achieve 0.95

IoU in 50 interactions. It can also reduce the average num-

ber of interactions to achieve 0.95 IoU. Grabber was more

required for DT than for fBRS, which was expected since

DT is simpler and this version does not use object saliency

map learned from long strokes (Falcão and Bragantini

(2019)). However, fBRS-Grabber-wC performed worse

than fBRS-Grabber-wI in DAVIS and did not make much

difference in Berkeley with respect to fBRS-Grabber-wI .

Method Dataset # Images ≥ 50 NoC@0.95 Grabber (%)

fBRS Berkeley 23 16.77 -

fBRS-Grabber-wI Berkeley 12 14.53 42.0

fBRS-Grabber-wC Berkeley 12 14.02 43.0

DT Berkeley 31 27.71 -

DT-Grabber-wI Berkeley 22 26.77 71.0

fBRS DAVIS 133 24.83 -

fBRS-Grabber-wI DAVIS 93 24.49 65.8

fBRS-Grabber-wC DAVIS 100 24.74 65.8

DT DAVIS 163 39.07 -

DT-Grabber-wI DAVIS 139 37.85 91.6

Table 1: For each method and dataset, the number of images to which

the method could not achieve 0.95 IoU in 50 interactions (bold is best),

average NoC@0.95, and percentage of images that required Grabber.

Table 2 shows that Grabber can reduce the average re-

sponse time for the interactions in both methods. Indeed,

when fBRS stops, the response time of Grabber is neg-

ligible (real time). One may have an idea about that by

observing the response times of DT-Grabber-wI .

Table 3 shows that Grabber can increase effectiveness

of the main approach, especially in Berkeley. DAVIS is

a more challenging dataset and the proposed robot for

Method Dataset Time per Inter. Dataset Time per Inter.

fBRS-Grabber-wI Berkeley 0.218 DAVIS 0.457

fBRS-Grabber-wC Berkeley 0.225 DAVIS 0.458

fBRS Berkeley 0.738 DAVIS 1.798

DT Berkeley 0.111 DAVIS 0.287

DT-Grabber-wI Berkeley 0.078 DAVIS 0.200

Table 2: For each method and dataset, the average response time in sec-

onds per interaction.

Grabber requires improvements. It is also worth noting

that the IoU of fBRS may be 5% overestimated since the

same robot is used for training and testing (Benenson et al.

(2019)).

Method Dataset IoU Dataset IoU

fBRS Berkeley 0.938 ± 0.023 DAVIS 0.915 ± 0.071

fBRS-Grabber-wI Berkeley 0.946 ± 0.014 DAVIS 0.916 ± 0.122

fBRS-Grabber-wC Berkeley 0.946 ± 0.012 DAVIS 0.922 ± 0.105

DT Berkeley 0.925 ± 0.077 DAVIS 0.913 ± 0.098

DT-Grabber-wI Berkeley 0.941 ± 0.027 DAVIS 0.910 ± 0.125

Table 3: For each method and dataset, the mean and standard deviation

of IoU over the image cases that required Grabber.

Finally, Figures 7(a)-(b) show that the Grabber’s con-

tour has higher adherence to the object’s border than

the segmentation of fBRS, and Figures 7(c)-(d) show the

same for Grabber-DT.

5.3. Discussion

The experiments have been enough to demonstrate the

advantages of integrating Grabber with fBRS and DT.

Similar results should be observed with other methods.

We expected better results with fBRS-Grabber-wC than

with fBRS-Grabber-wI , because the use of object saliency

maps can usually improve segmentation, as observed

in Falcão and Bragantini (2019). It is possible that our

decision to change from fBRS to Grabber was premature

and Grabber could not benefit of the improvements in the

object saliency map of fBRS.

Figures 8 (a)-(f) show the progress of the object

saliency map along with a few interations in fBRS. Note

in Figure 8(c) that the map of fBRS is biased to enhance

people. Due to crop and optimization based on the dis-

tance maps of the clicks, fBRS indeed improves the map

for the object of interest — the shirt of a person. Never-

theless, even the initial map in Figure 8(c) affects Grabber

positively since its results are better with than without the
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map, for distinct values of ε (Figures 8(g)-(l)). This ex-

ample also shows that a higher value of ε would improve

convergence in fBRS-Grabber-wC and fBRS-Grabber-wI ,

when compared to the best value of ε estimated in SBD.

In summary, the user experience can be considerably

improved when using Grabber to speed up convergence in

interactive segmentation. The decision of when to switch

from the main method to Grabber, its parameters, and

anchor-point manipulation should be better managed by

the user, upon the visual analysis of the process, edge

weights, object maps, etc.

6. Conclusions

We presented Grabber, a tool to improve convergence

in interactive segmentation by integration with any other

method. We evaluated fBRS-Grabber and DT-Grabber,

showing improvements in user control, effectiveness, and

efficiency. We intend now to investigate saliency map

improvement from user markers for Grabber segmenta-

tion (Spina et al. (2012)).
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