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we humans tend to overestimate AI advances
and underestimate the complexity of our own
intelligence

(Melanie Mitchell)
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Resumo

Nos últimos anos, algoritmos de aprendizado de máquina se tornaram a abordagem pre-
dominante para resolução de diversas tarefas de visão computacional e processamento
de imagens, dado um conjunto de exemplos (i.e. dados rotulados). O desempenho des-
ses algoritmos está altamente correlacionado com a diversidade de exemplos e qualidade
das rótulos, especialmente nos métodos baseados em redes neurais, que requerem uma
quantidade significativa de dados.

Notavelmente, a rotulação de segmentos nas imagens requerem um grande esforço para
produzir anotações de alta qualidade, devido à unidade de anotação, pixels, recorrendo a
metodologias interativas para o auxílio do usuário, as quais são o tema central desta tese.

O problema de segmentação de imagem interativa envolve duas tarefas fortemente
acopladas: reconhecimento, e delineamento de objetos. Neste contexto, o reconhecimento
de objetos se refere à sinalização de uma região de interesse e sua atribuição de um
rótulo. O delineamento é responsável por delimitar com precisão o limite (i.e. contorno)
do objeto. Na vasta literatura de métodos interativos de segmentação de imagem, um
usuário humano é empregado inicialmente para reconhecer os objetos de interesse, uma
vez que, esta tarefa requer um maior esforço cognitivo. Com esta informação inicial, a
máquina realiza a tarefa mais trabalhosa de delinear milhares de pixels.

A partir desta estratégia colaborativa entre homem e máquina para segmentação in-
terativa de imagens, este estudo contribui com os seguintes pontos:

• Dynamic Trees : Estendemos o operador Transformada Imagem-Floresta, propondo
uma nova metodologia que atualiza os pesos do grafo da imagem conforme a segmen-
tação é calculada, obtendo resultados de alta qualidade na segmentação da imagem
a partir de marcadores inseridos pelo usuário.

• Grabber : Os métodos interativos existentes baseados em aprendizado profundo apro-
ximam a forma do objeto de interesse com pouca interação do usuário; no entanto,
esses não conseguem concluir a segmentação de forma eficaz devido à incapacidade
de delinear os detalhes com precisão. O Grabber serve como ferramenta para fina-
lizar o delineamento do contorno a partir de qualquer máscara de segmentação.

• Anotação de segmentos no espaço das características: Investigamos outro paradigma
de anotação de segmentos, onde a etapa de delineamento ocorre antes do reconhe-
cimento manual — a metodologia proposta apresenta resultados promissores para
a segmentação de imagens em maior escala — e abre novos rumos de pesquisa.

Em resumo, investigamos a literatura existente de segmentação interativa de imagens,
contribuindo com a introdução de novos algoritmos que realizam a segmentação a partir
de marcadores e contornos, e propondo um novo paradigma para a anotação de imagens
em larga escala.



Abstract

In recent years, machine learning algorithms that solve problems from a collection of
examples (i.e. labeled data), have grown to be the predominant approach for solving
computer vision and image processing tasks. These algorithms’ performance is highly
correlated with the abundance of examples and their quality, especially methods based
on neural networks, which are significantly data-hungry.

Notably, image segmentation annotation requires extensive effort to produce high-
quality labeling due to the fine-scale of the units (pixels) and resorts to interactive method-
ologies to provide user assistance, being the central theme of this thesis.

The interactive image segmentation problem involves two tightly coupled tasks, object
recognition and delineation. In our context, object recognition concerns signaling that a
region is of interest and assigning a label to it. Delineation is responsible for precisely
delimitating the object’s boundaries. In the vast literature of interactive image segmen-
tation methods, a human user is employed to recognize the objects of interest first, which
requires a more significant cognitive effort. With this initial input, the machine performs
the cumbersome task of delineating thousands of pixels.

From this collaborative strategy between human and machine employed for interactive
image segmentation, this study contributes the following:

• Dynamic Trees : We build upon the existing framework of the Image Foresting
Transform, proposing a novel methodology that updates the weights of the image
graph as the segmentation is computed, obtaining remarkable results on the image
segmentation from user inserted markers.

• Grabber : Existing deep learning-based interactive methods approximate the object
of interest shape with minor user input; however, they fail to effectively finish the
segmentation due to the inability to delineate the boundaries precisely. Grabber,
serve as a tool to resume the contour delineation from any segmentation mask.

• Feature Space Annotation: We investigate another paradigm of segment annotation,
where the delineation step occurs before the manual recognition — the proposed
methodology shows promising results for segmenting images at a larger scale — and
opens up new research directions.

In summary, we investigate the existing literature on interactive image segmentation,
contributing to it by introducing novel algorithms that performs the segmentation from
markers and contours, and finally proposing a new paradigm for image annotation at
scale.
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Chapter 1

Introduction

Image segmentation concerns splitting an image into segments (i.e. regions) with simi-

lar characteristics. Its applications range from medical [62] and biological [155] imaging,

photo-editing [143], remote-sensing [114] to autonomous vehicles [48, 172]. It is a signifi-

cantly difficult problem due to the number of units being analyzed (e.g . a mobile image

contains more than a million pixels), the dependency between neighboring regions, and

the ambiguity of precisely defining a segment (e.g . a whole tree can be considered a seg-

ment or it can be partitioned into branches and leaves). Due to these obstacles, interactive

methods are indispensable tools that allows achieving the most accurate results to provide

examples for learning-based methodologies or when automatic techniques fail.

Moreover, with the advancement of automatic methods based on Convolutional Neu-

ral Network (CNN) [97, 94, 83], the necessity of high-quality annotated data increased

drastically, especially in the context of segmentation, which requires significantly more

effort than other image-related tasks. For example, the ImageNet [58] dataset for image

classification in between 2010 and 2012 reached more than 10 million labeled images, while

a much more recent dataset, LVIS [77] from 2019, contains the annotation of 2.2 million

high-quality segmentation instances, being a magnitude larger than others segmentation

datasets [61, 133], but at the same time a fraction of the older ImageNet dataset. Hence,

interactive segmentation techniques are of utmost importance to assist the labeling of

segments, providing not only user control, and allowing accurate annotation but also per-

forming the labeling with a low effort so that users can annotate several images quickly.

1.1 Interactive Image Segmentation

Interactive image segmentation techniques are effective because they combine the com-

plementary competencies of humans and machines [65]. Humans can quickly identify

objects but are not effective at delineating an object’s boundary or at labeling a group

of pixels without assistance. In comparison, machines can process a large amount of

data in well-defined tasks but lack the cognitive abilities of discerning objects, espe-

cially in the combinatorial context of objects in an image, where a pixel can belong to

multiple labels depending on the given context. Thus, in this thesis and most of the

literature [126, 65, 64, 143, 49, 39, 170, 111, 36], the interactive image segmentation
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paradigm employs the user for detecting the object or region of interest and the machine

for segmenting (i.e. partitioning, grouping, delineating) the images.

Furthermore, CNN methods also contributed to the development of novel techniques

for interactive image segmentation [170, 100, 99, 111, 89, 150, 93, 173, 101], significantly

reducing the annotation burden, but introducing new problems, as they can greatly ap-

proximate the desired object’s shape but fail at responding to the user interactions, dis-

playing significant bias towards results seen during training.

In contrast, classical graph-based approaches are very responsive to user input but

require extensive user input to perform accurately. And it is an on going challenge the

most effective way of combining these methodologies to fully exploit their complementary

advantages.

Our contributions in this work are three-fold: first, we improve upon existing graph-

based methodologies by introducing a new algorithm that estimates the arc-weights on-

the-fly, improving the graphical model as the segmentation progresses; second, we develop

a tool for delineation correction agnostic to the label generating procedure, assisting the

segmentation of non-responsive algorithms; and finally, we propose a large-scale annota-

tion procedure by questioning the necessity of labeling on the image domain, implementing

a proof-of-concept that performs image annotation on an abstract space generated from a

set of initial segments, allowing annotation of multiple images at once, and reducing user

effort as additional labels are acquired.

1.2 Objectives

Since high-quality annotated data is a huge limiting factor to applying state-of-the-art

techniques on problems where labels are scarce, this work’s general goal is to improve

the annotation of segments on image data by investigating and understanding existing

interactive image segmentation methods. Them being, classical techniques that model

the images as graphs, and more recent CNN-based methods that solve the segmentation

as a pixel classification problem.

From this investigation, it was clear that CNN-based methods were significantly push-

ing the boundaries of existing interactive image segmentation methodologies and intro-

ducing new shortcomings. Hence, one of our goals was to provide a tool with greater user

control to assist the correction of segments while being agnostic to the original segmenta-

tion procedure, benefiting CNN-based methods, which obtain an excellent approximation

of the object while the boundaries might be inaccurate and unable to be fixed.

Moreover, existing techniques only allow annotation of a single object at once, de-

manding massive effort when considering the dataset creation process as a whole, since

it requires annotating thousands of images containing multiple objects each — leading

to our research question of "Can images be effectively annotated in a domain other than

the image domain?" which strives to develop a novel procedure for large-scale image

segmentation annotation.
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1.3 Contributions

This thesis’s contributions start from graph-based techniques, which were the most popu-

lar and successful techniques preceding CNN-based approaches. With the CNN’s progress,

our contribution shifted to identifying limitations of the annotation on the image domain

and proposing a novel methodology for large-scale annotation.

In summary, our contributions are:

• We developed a novel methodology for graph-based interactive image segmentation

that dynamically estimates the arc-weight between pixels during the region growing

process of the Image Foresting Transform operator, thus providing a more robust

estimate less sensitive to noise. This method, called Dynamic Trees, showed promis-

ing results, beating existing graph-based algorithms on standard image segmentation

baselines.

• To complement CNN-based methods for interactive segmentation, where user con-

trol is sacrificed for the networks’ predictive power, we developed a new technique,

called Grabber, to accurately correct segments without ruining the correct regions,

our results showed that state-of-the-art graph and CNN-based methods benefit from

using it as a finishing procedure.

• We proposed a novel methodology for annotating image segments that allow la-

beling multiple images at once on an abstract space representation, speeding up

the annotation process when redundant information is present. We implemented a

proof-of-concept obtaining competitive results with state-of-the-art methods.

While these contributions were developed independently in a sequence as our study

progressed, they complement each other. For example, the methodology for large-scale

annotation results in coarse segments that can be corrected with the graph propagation

methodology or the contour-based method, Grabber. Furthermore, they go along with

the progress in the area, starting with graph-based methodologies with simple learning

mechanisms to a more elaborate scheme that leverages the power of deep learning.

The implementation of all the methodologies described in this thesis are available at:

• https://github.com/PyIFT/pyift is the library with the algorithm proposed in

Chapter 3 and the back-end of 4’s methodology.

• https://github.com/LIDS-UNICAMP/grabber the napari plugin [152] of the tool

presented in Chapter 4.

• https://github.com/LIDS-UNICAMP/rethinking-interactive-image-segmentation

contains Chapter 5 tool/methodology.

1.4 Structure of the thesis

This thesis is organized such, in Chapter 2, we review the necessary background for

understanding existing interactive segmentation methodologies while also reviewing the

https://github.com/PyIFT/pyift
https://github.com/LIDS-UNICAMP/grabber
https://github.com/LIDS-UNICAMP/rethinking-interactive-image-segmentation
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state-of-the-art techniques. Initially presenting what image segmentation is, then intro-

ducing the Power Watershed (PW) framework that unifies several classical graph-based al-

gorithms for image segmentation, next the Image Foresting Transform (IFT) is presented,

it intersects with the PW family, and it is the building block for the proposed methodolo-

gies on later chapters. Then we briefly review Artificial Neural Networks (ANNs), leading

to CNNs and their application to interactive image segmentation and edge detection and

the current state-of-the-art for these tasks. Further, we introduce additional techniques

required for our large-scale annotation methodology: metric-learning that is applied to

improve the data representation as the user interacts, and dimensionality reduction that

is used to represent the data from its abstract representation to a two-dimensional em-

bedding for visualization.

From Chapter 3 forward, the proposed methodologies and their respective results are

presented, them being: Chapter 3, a methodology for graph-based image segmentation

from markers with dynamic arc-weight, Dynamic Trees; Chapter 4, a technique for de-

lineation correction agnostic to the initial label generating method, Grabber; Chapter 5,

a novel scheme for interactive image segmentation annotation that allows multiple images

to be annotated once using feature space projection. And finally the conclusion.
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Chapter 2

Technical Background

Since we are concerned with the annotation of image segments, we will first describe what

image segmentation is, then the classical graph-based methodologies for interactive image

segmentation and an unsupervised approach, the hierarchical watershed, are presented.

Further, we give a brief overview of neural networks and convolution networks to introduce

interactive segmentation and boundary detection methods based on them. Next, we

introduce metric learning and dimensionality reduction, which are fundamental to our

work of interactive segmentation through feature space annotation. Additionally, works

related to this thesis are distributed throughout the text, some being presented in this

background chapter and others in the chapters of the methods most related to them.

2.1 Image Segmentation

Image segmentation concerns with the partition of an image into groups of pixels (i.e.

segments, superpixels) with similar characteristics, in the best scenario, clustering pixels

that belong to a single object into unique segment, Figure 2.1.

It is often an intermediate step of a larger task, such as the extraction of brain volumes

to assist medical diagnosis [116, 118, 117] or the assignment of labels to segments for scene

understanding of an autonomous vehicle driving system [48, 172].

Moreover, this cluster assignment is not straightforward due to the hierarchical struc-

ture of images, where a pixel can belong to multiple objects depending on the context (e.g .

it can belong to a face or the whole person) complicating the annotation and assessment

of the segmentation quality.

In the interactive context, a user provides cues to indicate objects of interest, and

the algorithm delineates the remaining unlabeled regions. Thus, exploiting the human

superior cognitive ability to visually detect objects efficiently (i.e. weak detection), while

the machines assist the laborious task of assigning a label to each pixel (i.e. segmentation,

delineation).

The cues to assist the segmentation algorithm may come in several forms, as shown

in Figure 2.2. For instance, contour-based methods [65, 126] receive anchor points which

secures a pixel as a boundary, and the algorithm tracks the object’s contour between them,

usually in an orderly fashion. The annotation can be scribbles (i.e. markers, seeds) [64, 34,
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Original Segmentation

Figure 2.1: Example of image segmentation. Original input image on the left. Segments
represented by their color average on the right.

75, 49], such that the segmentation is analogous to the semi-supervised (i.e. transductive)

machine learning methods, where a set of labeled samples (i.e. pixels) propagates their

labels to the remaining unlabeled samples. Other methods [143, 158, 111, 173] delineate

the segment of interest from a bounding-box, by leveraging the rectangle as a rough

estimate of the objects’ location and modeling the inside and outside characteristics [143,

158]. More recently, click-based methods [170, 100, 99, 89, 150, 101] were proposed, where

the segmentation is obtained from an initial click inside the object (i.e. positive click),

and additional clicks are supplied until the annotation converges; negative clicks are also

allowed to provide background cues.

Algorithms that solve the segmentation from these cues can be roughly divided into

two categories: Structured prediction, where the assignment of the pixels’ labels con-

sider the results of neighboring pixels. For this case, we will focus our discussion on the

Power Watershed (PW) [49] family that generalizes several graph-based methodologies

and the Image Foresting Transform (IFT) [64] framework that is central to the proposed

methodologies of Chapters 3 and 4. And pixel classification, primarily CNN-based meth-

ods, where the segmentation problem is treated as a inductive classification task over the

image pixels. Note that despite employing different methodologies, both approaches fall

on the same paradigm of first obtaining a weak detection of the object through human

interaction and later performing the delineation from these cues through their respective

algorithm.

It must be noted that despite the two being competing approaches, they also have

complementary characteristics, the CNN can efficiently learn patterns from data avoiding

the burden of tunning hyper-parameters or pre-processing steps to obtain the optimal

performance so that the graph-based techniques can serve as post-processing of the CNN’s

output, as with conditional random fields for semantic segmentation [40] and watershed

for instance segmentation [19, 166, 70].
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(a) (b)

(c) (d)

Figure 2.2: Different examples of user cues: (a) Contour annotation; (b) Scribbles; (c)
Bounding-boxes; (d) Clicks.
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(a) (b) (c)

Figure 2.3: Example of a graph from image; (a) Artificial 3 × 3 grayscale image; (b) A
graph with similarity arc weights; (c) Segmentation into two connected components (i.e.
graph partition) by removing the edges with minimum sum of weights.

2.2 Power Watershed for Interactive Image Segmenta-

tion

To solve segmentation efficiently in a structured manner, most methods model the image

as a graph, where each pixel is seen as a node and connected to its adjacent neighbor;

the adjacency can be extended to multiple radii on the image grid, but we will consider

the 4-neighbor adjacency throughout the text (radius of one). On this graph, a binary

segmentation can be interpreted as a classification of the nodes into two classes, 0 and 1, or

a cut disconnecting nodes with distinct labels. Figure 2.3 presents an artificial example of

a minimum cut on the graph, where the weights between pixels are inversely proportional

to their color differences and segmentation is obtained by dividing the graph with the cut

of minimum sum of edge weights.

Over the last two decades, multiple different methodologies (and criteria) were pro-

posed to solve the segmentation from this graphical model as an optimization problem.

Classical approaches are: Shortest-paths [64], where the segmentation is obtained from

a competition between multiple path sources, and each pixel label assignment is according

to the source that provided the path with least cost. Watershed cuts (MST) [51] inspired

by the morphological watershed operator [31], but it considers the annotated regions as

the watershed basins’ minima; Random-walks (RW) [75], where the results are according

to the probability of a random process starting from the labeled regions reaching each

unlabeled pixel; Graph-cuts (GC) [34] where the graph is partitioned given the minimum-

cut criterion, where the sum of the removed edge weights is the smallest.

Notably, all of these methods are unified by the seminal work of Couprie et al . [49]

called Power Watershed (PW), extending [149, 12]. Further, Ciesielski et al . [45, 43]

explored their similarity with the Fuzzy Connectedness [159], another segmentation algo-

rithm, significantly popular in the medical imaging community.

These methods represent an image I as a graph G = (V,E,w), where V are the

vertices (e.g . image pixels), E represents the edges which connect two adjacent nodes

from V (e.g . pixels adjacent on the image domain), and w is an arc-weight function,
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which maps the edges into a non-negative real value, assigning larger values to nodes that

should remain connected. The segmentation on the PW framework resumes to a partition

of the graph into two different label assignments (i.e. two disconnected components, a

cut) by minimizing the objective function

J(x | y) = α
∑

(i,j)∈E

w(i, j)p|xi − xj|q

︸ ︷︷ ︸

pairwise term

+
∑

v∈V

u(xv | yv)p|xv − yv|q

︸ ︷︷ ︸

unary term

(2.1)

where the array x is our variable of interest that assigns a value between 0 and 1

to each node in V , obtaining the segmentation given a decision criterium, for example,

node i belongs to label 1 if xi > 0.5 and 0 otherwise; y represents an binary array of

the expected values for each node, it is obtained from user annotation or some previous

knowledge about the task, providing additional information about the object location.

The function u(xi | yi) : [0, 1] × {0, 1} 7→ {R≥0,∞}, assigns a non-negative value

proportional to the likelihood of that given node i belonging to its target label yi and α

controls the trade-off between the pairwise (i.e. neighboring agreement) and the unary

term (i.e. prior fidelity). Therefore, if α is 0, the pairwise term is ignored and the optimal

x is according to a threshold over u(.), p and q are parameters that generalizes the PW

to the classical methods and they will be discussed ahead.

The similarity weight function is usually defined by

w(i, j)p = exp(−‖I(i)− I(j)‖)p = exp(−p‖I(i)− I(j)‖) (2.2)

where I(v) represents the color space or any other feature representation of a pixel v

in V . Such that, as p increases the w(i, j)p tends to zero quicker, leading to a sharper

bell curve resulting from the exponential function, increasing the influence of pixels with

greater differences — less smooth segmentation boundaries.

For binary segmentation with hard constraints, as the usual case in the interactive

settings where the annotated regions are fixed to its given label, the optimization can be

simplified by setting the unary terms to u(xi | yi = 1) =∞ for every pixel i annotated as

foreground and u(xi | yi = 0) = ∞ when labeled as background and zero otherwise, in-

cluding the remaining unlabeled pixels. Enforcing that labeled regions to never disconnect

from theirs infinity linked source, leading a simplified optimization problem of

argmin
x

J(x | y) =
∑

(i,j)∈E

w(i, j)p|xi − xj|q (2.3)

subject to xv = 1 ∀ v ∈ SF (2.4)

xv = 0 ∀ v ∈ SB (2.5)

where the SF is the subset of V containing the pixels assigned to the foreground by

the user and SB to the background.

From this simplified model the PW generalizes to the other methods by varying the

p and q parameters (Table 2.1), providing a greater understanding of the nature of the

classical graph-based segmentation algorithms. However, despite all of these methods be-
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q
p

0 finite ∞
1 Collapsed Seeds Graph Cut Power Watershed q = 1
2 l2-norm Voronoi Random Walks Power Watershed q = 2
∞ l1-norm Voronoi l1-norm Voronoi Shortest paths

Table 2.1: Equivalency between different p, q parametrizations and other algorithms.

longing to this unifying framework, their optimizations are most efficient when employing

their respective algorithms.

For a binary solution of x with q = 1 and p finite, |xi−xj| is equivalent to a indicator

function, that is 1 when xi is different from xj and 0 otherwise. Hence, the objective

function is the sum of the edge weights of pixels with distinct labels, being equivalent

to the minimum cut problem, also known as Graph-Cut [35]) in the computer vision

community, and can be efficiently computed on sparse image graphs using the Maxflow

algorithm proposed by Boykov and Jolly [34] or the Incremental Breadth-First Search

algorithm [71], we refer to [161] for a detailed comparison of different maxflow algorithms’

computational performance for image segmentation.

As shown by [149], when q = 2 with p finite, the optimization is equivalent to the

Random-walk (RW) [75] objective’s function, where the objective function is a quadratic

equation and is solved as a sparse linear system of equations. Further, it obtains a fuzzy

label assignment for each unlabeled pixel. Recently, Sanmartín et al . [68] proved that the

RW is the expected label assignment of sampling Watershed Cuts of the image graph from

a Gibbs distribution of the spanning trees’ cost, further extending the theory between the

relationships of these algorithms.

As the parameters p and q tends to infinity and taking into account that p
√
. is a

monotonic function, the simplified objective function (Equation 2.5) tends to the maxi-

mum norm [149]

argmin
x

J(x | y) = lim
p,q→∞

∑

(i,j)∈E

w(i, j)p|xi − xj|q

= max
(i,j)∈E

w(i, j)|xi − xj| (2.6)

Thus, this parametrization can be solved by computing the maximum spanning tree

(MST) [50] and removing the edge with minimum weight subject to the constraint that

the seed nodes with distinct labels belong to the same connected component in G. In

other words, splitting the seeds by the minimum edge from the maximum spanning tree.

Additionally, it can be computed using the shortest path algorithm by accumulating

the costs with maximum operator [64]. While it does not obtain an MST [51], its labeling

is the same.

The shortest paths methodology falls under IFT’s [64] framework, which is fundamen-

tal to two of our contributions (Chapters 3, 4) and its presented on its own Section 2.3.

Unfortunately, the maximum-norm objective function’s solution might not be unique.

The PW solves this issue by setting q to a finite value and proposing a different algorithm
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that executes a MST segmentation but solves the RW’s linear system on regions with

tied edge weights (non-unique solutions). Thus, being a intermediate solution between

the shortest paths and the RW.

2.3 Image Foresting Transform

As mentioned earlier, when p and q tends to infinity the PW objective function (Equa-

tion 2.5) can be solved through the IFT framework, which supports several applications

beyond image segmentation, such as distances transforms, multi-scale skeletons [63],

boundary-tracking [65] and pattern recognition [131, 140]. Note that, just a subset of

the IFT operators falls under the PW framework, several other connectivity functions

have their own category [124, 56, 113, 55] regarding optimum path forests.

To be more convenient with the following chapters, from now on the graph’s weights

measure a dissimilarity between pixels, w(i, j) = ‖I(i) − I(j)‖. Thus, solutions with

larger weighted edges should be penalized, for example, the solution for the Watershed

Cut would be based on a minimum spanning tree, or optimum path forest as it will be

described here, as opposed to maximum spanning tree from Equation 2.6.

Additional notations extending the previously shown graph formulation are necessary

for the IFT algorithm: πpn = 〈πpn−1 , pn〉 = · · · = 〈p0, p1, · · · , pn〉 is a sequence of nodes

(i.e. path) with end in pn, rooted in p0, such that (pi, pi+1) ∈ E, it can also be a trivial

path with a single node, πq = 〈q〉, Πq represents the set of all paths with terminus q

in G and Π the set of all paths; a connectivity function f : Π 7→ {R≥0,∞} defines the

accumulative weights along the paths; the path-cost mapping C : V 7→ {R≥0,∞} records

the current optimal connectivity value for each node; the mapping P : V 7→ {V, nil}
indicates a node’s predecessor in the path sequence, or nil if it is starting node (i.e. root)

— the optimum path forest can be recovered by following the predecessors path for every

node in V and the resulting labeling map L : V 7→ {0, 1} for the binary case.

The connectivity functions f may be defined in different ways beyond the PW frame-

work and even violating the optimum cost mapping conditions described in [44] while still

producing effective object delineation [124, 56, 113, 55]. The most popular connectivity

function is

fmax(〈q〉) =
{

0 if q ∈ SF ∪ SB

∞ otherwise

fmax(〈πp, q〉) =max{fmax(πp), w(p, q)} (2.7)

Hence, as the paths extend their connectivity (i.e. path cost) value is the bottleneck

(maximum) accumulative cost along its route.

Moreover, at the IFT initialization, every node belongs to a trivial path, and from

fmax their path-costs are initialized with 0 if they belong to seed and otherwise infinity.

Thus, their path will be replaced as the IFT algorithm progresses, minimizing the total

path cost
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Algorithm 1 Image Foresting Transform

Input: Graph G = (V,E,w), seeds set SF and SB

Output: Cost map C, Predecessor map P and label map L

Auxiliary: Priority queue Q = ∅, temporary variable pathcost

1. For each p ∈ V

2. C(p)←∞
3. P (p)← nil

4. If p ∈ SF ∪ SB

5. C(p)← 0
6. If p ∈ SF

7. L(p)← 1
8. Else

9. L(p)← 0
10. Insert p in Q

11. While Q 6= ∅
12. Remove p from Q, such that p = argmin∀q∈Q{C(q)}
13. For each q ∈ V | (p, q) ∈ E, q ∈ Q

14. pathcost← max{C(p), w(p, q)}
15. If pathcost < C(q)
16. C(q)← pathcost

17. P (q)← p

18. L(q)← L(p)

Ctotal =
∑

q∈V

C(q) =
∑

q∈V

min
πq∈Πq

f(πq) (2.8)

Algorithm 1 presents the IFT algorithm for image segmentation that minimizes the

Equation 2.8; the lines from 1 to 10 are the algorithm initialization with the trivial path

cost function, and the provided seed sets SF and SB; Until every node is processed (line

11), the node p with minimum path cost is selected (line 12) to extend its path to its

neighbors q, if it offers a lower path cost than the current path cost of q (line 13-15) this

path is extended, updating q’s path cost, predecessor map, and labeling. Hence, at each

iteration the optimum path forest propagates its labels to neighbouring nodes with sub-

optimal path costs, returning the final labeling map L and the other additional mappings

when finished.

2.4 Hierarchical Watershed with Attributes

In the unsupervised scenario, the hierarchical watershed [32, 129, 121] defines an operator

that constructs a hierarchy from a non-empty set, in our case, the pixels of an image

without any user input.

Using the previously introduced definition of an image I represented as a weighted

graph G = (V,E,w) and defining the hierarchy as in [129] — a chain of partitions (i.e.

clustering of V ), H = {P0,P1, · · · ,Pl}, where each grouping in Pi is a superset of the

groups in Pi−1. Moreover, in P0 each element in V is its own group, and Pl contains
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(a) (b)

Figure 2.4: (a) Planar graph; (b) dendrogram of hierarchy build by non-decreasing order-
ing of edges.

a single group containing all elements of V . This can be interpreted as a tree (i.e.

dendrogram) where P0 are the leaves and Pl the root, Figure 2.4.

The original watershed transform operator [31], can be described following a topo-

graphic perspective, where a grayscale image (or its gradient) is viewed as a topographic

map where the pixels’ brightness represents different heights over the image grid, and seg-

ments are assigned through a flood filling procedure starting from each local minimum,

assigning a single distinct label minimum (i.e. watershed basin), the contour of these

segments are the watershed lines of the image topography. During the flood filling, at

each iteration the pixels at the water level are merged into their local minimum, and this

procedure stops after every pixel has been processed.

The watershed hierarchy extends this concept by assigning each pixel to multiple

partitions according to the distinct sets obtained during the increase of the water level

(i.e. flood filling). Therefore, the hierarchy is composed of the partitions resulted from

merging neighboring regions when the water level rises above the watershed line separating

them after the flood filling iterations.

The framework proposed in [53] formalizes this concept of region merging to any

edge-weighted graph, and its dual representation as a saliency map, analogous to the

ultra-metric contours (UCM) [129] of a hierarchy on an image grid. Where the saliency

map assigns a value to each edge in G proportional to the level where the regions linked

by it became connected in H. Hence, regions connected at the lower level of the hierarchy

will have a smaller saliency and regions becomes connected closer to the root have a

greater saliency value, Figure 2.5 presents an example, the image graph edges saliency

map are embedded into a Khalimsky [129, 18] for visualization. A hierarchy results in a

segmentation by selecting saliency value to split the regions, it can be seen as an horizontal

cut in the hierarchy dendrogram.

Moreover, while the watershed hierarchy was initially proposed to operate on an se-

quence of non-decreasing edge weights. It also allows the processing of others attributes

and manipulation of the hierarchy tree structure with filtering operations.

For instance, hierarchy can be constructed with an area attribute, where the regions

are the result of multiple area closing operations [162] over graph edges with increasing

radius, as described in [53]. From a single-linkage clustering (i.e. minimum-spanning

tree) of the graph G, the procedure of uprooting sequentially accumulates (from the tree
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(a) (b) (c)

Figure 2.5: (a) Original image; (b) its edge-estimation using [105]; (c) saliency map from
its watershed hierarchy by dynamics, resized with the maximum over a neighborhood
to improve visualization of thin lines. Greater brightness (i.e. saliency) means that the
regions were merged closer to the root of the hierarchy.

leaves to its root) the area of the hierarchical partitions as they merge, resulting in a new

hierarchy with a new ordering according to the nodes’ area, Figure 2.6c. Note that, this

is also a non-decreasing attribute, since the area will never decrease.

Notably, the standard watershed hierarchy from 2.6a is strikingly similar to the original

image’s edge-estimation, this is due to the duality of a fuzzy contour and the hierarchical

representation of its segments.

Additionally, Perret et al . [135] proposed an efficient algorithm to filter nodes of an

hierarchy. This tackles the problem of having a hierarchy where undesirable partitions are

high up the tree and a cut would result in undesired segments. By filtering the hierarchy

with a different attribute from the original construction, they can merge regions inde-

pendently of their saliency, Figure 2.6. Barcelos et al . [21] also presents some additional

studies of simplification (filtering) of non-relevant regions.

2.5 Convolutional Neural Networks

Convolutional Neural Network (CNN) extends Artificial Neural Networks (ANNs) [96, 73]

to the domain of images [97, 94, 83, 107], videos [90], time-series [95], graphs [92], and

other kinds of unstructured data, where using the standard perceptron is not effective or

impractical. Hence, in this section, we review ANNs, their relation to CNNs, and how

CNNs can be applied for image classification and image segmentation problems.

They are of utmost relevance to this work because CNNs have shown outstanding

performance for interactive segmentation, and they can extract features from images

exceptionally well, being a key technology in our features space annotation methodology

(Chapter 5). Moreover, the state-of-the-art methods for interactive segmentation are

based on them.

Despite its original bio-inspired origins with the perceptron model [142] inspired by



28

(a) (b) (c)

Figure 2.6: (a) Standard watershed hierarchy; (b) result from (a) filtered by area; (c) wa-
tershed hierarchy by area. The filtered hierarchy (b) had its irrelevant segments merged
approaching the results from (c). Saliencies were resized with the maximum over a neigh-
borhood to improve visualization of thin lines.

the brain’s neural network, modeled by a single neural network’s layer. The ANN’s

computational and empirical aspects have advanced much faster in the recent decade

than its biological and theoretical counterparts. Hence, in this section, we follow a more

geometrical interpretation of the network’s behavior, where each neuron is a half-plane

(subject to the activation function) dissecting the data’s feature space given the inner

product between the weights (i.e. plane normal vector) and its input.

An ANN comprises multiple densely connected layers, where each layer has weights

and biases (affine transformation) and an activation function (non-linear operation) [148],

the combination of the weights and activation function is also known as neurons. Thus, a

single fully connected layer expecting input of size di and output of size di+1 is given by

fi(x|Wi,bi) = φ(xWi + bi) (2.9)

where x ∈ R
di is the input, Wi ∈ R

di×di+1 and bi ∈ R
di+1 are the network weights, φ(.)

is the activation function, that can be defined from a myriad of options, but lets consider

the Rectified Linear Unit (ReLU), where

φ(x) = max{0,x} = [x]≥0 (2.10)

Hence, each array wj ∈ Wi represents a hyperplane’s normal vector, the wj and x

dot products are computed by the matrix multiplication xWi, resulting in positive values

if they point to the same direction as its respective wj and negative values otherwise.

When employing the ReLU activation function, negative values are zeroed out, forming

polytopes (i.e. n-dimensional polyhedron) containing the data.

By stacking n fully connected layer with an input of size d0, output of size dn and
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widths d1, · · · , dn−1, an ANN f can be defined as

f(x|θ) = fn−1(fn−2(· · · f0(x))) (2.11)

where θ is the set of all parameters W0, b0,W1, b1, · · ·Wn−1, bn−1 parameters (omitted

on the right hand side for clarity). The parameters θ and the layers ordering is usually

called the network architecture.

Applying this methodology without changes to images, treating pixels individually, is

computationally impractical. For example, to process a single image with size of 400 ×
400 (much smaller than a picture from an average mobile device) with 3 color channels

represented as x ∈ R
d=400×400×3, and a single layer with a squared weighted matrix W ∈

R
d×d, would require more than a terabyte of memory.

The convolutional networks inspired by filtering operations from classical image pro-

cessing reduce the amounts of weights by sharing their values at different locations of

the image at each layer, in a process that is analogous to the cross-correlation operation.

Such that we formalize a convolutional layer as

fi(x|Wi,bi) = φ(x ◦W + b) (2.12)

where x ∈ R
H×W×di is the layer input, Wi ∈ R

di×k×k×di+1 and bi ∈ R
di+1 , are the

kernel weights and bias. Such that, the cross-correlation is applied di+1 times, each time

with a different weights, on the di-multi-band image x with a k × k window.

The resulting data height (H) and width (W ) is subject to several factors, the kernel

size k, spacing between sparse weights (i.e. dilation), the time steps between operations

(i.e. stride) and boundary conditions (i.e. padding). We refer to [3] to review the resulting

data dimensions computation.

These CNN networks architecture can be implemented by naively stacking the pre-

viously mentioned convolutional layers, but employing a more elaborate organization of

layers (i.e. convolutional blocks), can significantly improve their accuracy and computa-

tional performance [82, 83, 163, 138].

Notably, the Residual Block [83] is defined as

fres(x) = φ[φ(x ◦W2i + b2i) ◦W2i+1 + b2i+1 + x]

= φ[f2i(x) ◦W2i+1 + b2i+1 + x) (2.13)

such that, fres has two convolutional layers, the second layer sums the original input

before its activation function, thus, never losing the input signal. This improves the com-

putational performance by reducing the intermediate image depth with the W2i weights

and recovering its dimensionality with W2i+1, saving computational resources. Moreover,

by adding the original input it avoids the problem of vanishing gradient, benefiting the

backpropagation optimization [97], and allowing training of much deeper networks [83].

For different image related tasks the CNN’s architectures are adapted by swapping

the final layer according to the expected result (e.g . categories of images [83, 157, 138],

categories of pixels [141, 163], regression of bounding boxes coordinates [139]).

To classify images into C discrete categories (e.g ., {cats, dogs, birds}), the CNN archi-
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tecture wishes to extract a representation of the data (i.e. feature space representation)

where only the samples of the same classes are clustered together, we will call this feature

extractor network fcnn. From this representation, fully connected layers with softmax ac-

tivation function (i.e. decision layer) assigns a label according to the strongest activated

classes, this will be called ffully. Thus, we defined this network as

fclass(x | θ) = ffully(ψ(fcnn(x | θcnn) | θfully)) (2.14)

where fcnn : RH×W×3 7→ Rh×w×d, such that h � H, w � W and d � 3, a low-

resolution high-dimensional representation; ψ is a flattening function, usually being the

standard flattening which collapses the 3-dimensional image structure into a 1-dimensional

array with the same number of elements, or an global average pooling which averages

along the h× w dimensions into a d-dimensional array; and the fully connected network

is defined by ffully : R
d 7→ [0, 1]|C|.

With CNN’s, the image segmentation is also treated as a classification problem [141,

107], but it predicts a value for each pixel, resulting in an [0, 1]H×W×|C| output array.

Moreover, the segmentation architectures avoid reducing the input dimensions into a flat

array and employs a decoder-encoder regime, where the input image is mapped into a

lower resolution image with a greater number of channels (i.e. encoder network) and then

reconstructed back into the original resolution (e.g . decoder) for the pixel-wise prediction

with a shared weights classifier (i.e. convolutional layer with 1 × 1 window). Thus, it

does not have fully connected layers and it can process images from any size, this was

originally proposed as Fully Convolutional Networks (FCN) [107], and can be defined as

fsegm(x | θ) = fdecoder(fencoder(x | θencoder) | θdecoder) (2.15)

where the encoder network, fencoder, could be equal to fcnn from Equation 2.14. The

reduction of the input image resolution provides a larger receptive field; that is, pixels that

were further away on the original image domain can be evaluated with a small filter as

they get closer (i.e. smaller image), achieving greater semantic representation of the data

without diminishing the computational performance with a large kernel. The downside is

that the reconstruction results have greater artifacts as small details are lost [163].

The decoder network, fdecoder : Rh×w×d 7→ R
H×W×|C|, reconstructs the original image

resolution through transposed convolutions, or upsampling layers [107]. The last layer

applies a 1 × 1 convolution followed by a softmax activation, as a linear classifier, in a

similar fashion with fclass’s decision layer, assigning each pixel the label with the strongest

activation.

2.5.1 CNNs with User Input

For interactive image segmentation, CNN’s architectures for segmentation are adapted

to include user input and use it as cues to assist the object’s segmentation, originally

presented by Xu et al . [170] in 2016 with Deep Object Selection (DOS), it proposed

the use of an RGB image as input with two additional channels of a foreground and a

background distance maps from the user-defined clicks; the network outputs a probability



31

Figure 2.7: Example of RGB input with foreground and background distance maps from
green (foreground) and red (background) clicks resulting segmentation. Image from [170].

map for estimating the unary terms to perform graph-based segmentation with the Graph-

Cut algorithm, Figure 2.7.

The distance maps are the inverse of the distance transform from the user-inserted

points. Such that, these points have the greatest values and it diminishes as it goes

further away from its origins. Usually, the distances are normalized within a range and

they might be transformed to have a gaussian shape [111], although not that common.

While the literature heavily employs distance maps [170, 100, 111, 89, 150, 93, 101,

173], its crucial role of adding spatial information to a spatially invariant method (e.g .

CNNs) is never deeply discussed, to our knowledge.

Figure 2.8 shows an example, suppose the user wants to segment only the flower on the

left. However, both of the flowers have similar characteristics, and our feature extractor

is spatially invariant, so the extracted features will maintain this behavior. Hence, to

discriminate between them would be extremely difficult, if not impossible. By adding a

click on the left flower center and appending an additional axis for the distance map from

this point, their representation is no longer similar, assisting the classifier discrimination.

Moreover, a network can learn upon these additional features, obtaining better results

than just from an additional dimension on the input data.

To train the network to perform the segmentation from the inputs (i.e. clicks), mul-

tiple interactions are simulated during training, most of the time in a single shot by

sampling a random number of clicks; where the positive clicks are positioned randomly

inside the object with a minimum distance between each other and the object’s bound-

ary, and the negatives follow a similar strategy but on the objects’ outside. Most of the

training strategies [170, 100, 99, 89, 150, 101] are a variation of procedure. Mahadevan

et al . [109] proposed an iterative procedure that inserts clicks on the largest connected

component of the segmentation error, reproducing an user behaviour more closely, yield-

ing improvements to the network performance but at the cost of slower training, since

multiple iterations are required per image.

Seeking to improve upon DOS and exploiting the combinatorial nature of objects in

an image, Li et al . [99] proposed to obtain the desired segment in a two-fold; first, a CNN

estimates multiples candidates segments, learning ambiguity from the user input (e.g ., a

click in a person’s legs could signal the leg or the whole person) and a second network to

select a single mask from the set of candidates.

Regional Interactive Segmentation Network (RIS-Net) [100] improves the model re-

sponsiveness to user input by performing a focused segmentation from candidate regions.
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Figure 2.8: Effect of distance map when classifying a single flower: (a) Original image; (b)
Distance map centered at left flower (object of interest); (c) Red and green color space of
a sub sample of pixels; (d) Red, green and distance feature space of the same pixels with
plane separating the flowers, this was impossible without the distance map axis.
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As it will be presented further ahead, cropping and resizing plays a significant role in

improving CNN’s performance, since they are not resolution invariant. As DOS, RIS-Net

obtains a foreground probability map from the 5 channels input. Additionally, it samples

bounding boxes around regions of interest (ROI) containing negative and a positive click,

these regions are resized and processed through the network independently, obtaining a

finer segmentation where it requires the most — on regions between competing clicks,

where the user made corrections. At the end of the network, these ROIs and the global

segmentation are processed together with a pooling layer to obtain the final segmentation.

Furthermore, other forms of user input have been explored. Deep Extreme Cut

(DEXTR) [111] starts the segmentation from four user inserted extreme points (left,

right, top and bottom most of the object), from these points, they generate a single dis-

tance map, so the network processes a 4 channel input (i.e. RGB plus distance map).

Since the object is constrained to be inside these points, they crop the image with a tight

rectangle containing them and rescale it to a fixed size input; on their ablation study, this

is shown to improve their score by 7.9 %. Overall, their performance is truly outstanding;

however, applying annotation only on extreme points restricts the user interaction since

negative input are not allowed.

Zhang et al . [173] improved upon this by using two or more negative clicks to extract

a bounding box around the object and crop the image with it, and by allowing positive

clicks to indicate the foreground with its respective distance map. Further, they perceived

that the model errors are near the object’s boundary and do not improve as the networks

get deeper, and these errors were mostly results of artifacts from the low-resolution to

original resolution reconstruction. To address this, the final prediction layer employs

Pyramid Scene Parsing [174] module from multiple resolutions of the network’s features

along with the image reconstruction step from the decoding blocks.

The Poly-RNN [39], Poly-RNN++ [8], and Curve-GCN [102] obtain an initial seg-

mentation from a bounding box around an object and employ user interaction on anchors

points from the segmentation contour, the network regress the control-points coordinates

as the user interacts with it, providing better user supervision to the object delineation.

Lin et al . [101] obtains great improvement over existing methodologies by applying

the simple strategy of treating the first click separately from the rest, their motivation

was that the first click is usually centered on the object and it is always a positive click.

Thus, treating it differently from other clicks provides additional information. Their

network has two parallel branches, one for the segmentation with only the first click

input and another which receives the remaining input; the second branch combines the

representation extracted from both and predicts a single segmentation output. The loss

function penalizes the segmentation from the single click and the combined prediction

separately. Interestingly, this loss tackles the problem of biasing the network’s prediction

to some amount of clicks, where if provided with a large number of simulated input

during training, the network is not able to obtain a segmentation with just a few clicks,

and if trained with few interactions, its performance is better in a scenario with reduced

interaction, but the segmentation does not converge to the desired results when additional

interactions are required.

More recently, the techniques have shifted from changing how the user interacts with
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the network or the network’s architecture to how it can update during inference given the

user interaction to adapt to its needs. Backpropagating Refinement Scheme (BRS) [89],

recognized that the input distance maps are far from optimal since the distance trans-

form can degrade the feature representation when not centered or in small/thin regions.

Thus, they formulated an optimization problem to minimize the disagreement between

the annotated pixels (i.e., clicks) and the prediction by adjusting the foreground and

background distance maps during inference. This optimization is done by computing the

distance maps derivative over the whole network and using a quasi-newton optimizer,

L-BFGS [104].

Feature Back-propagation Refinement Scheme (fBRS) [150] reduces BRS’s processing

time by avoiding computing the derivative over the whole network, optimizing only an

affine transformation of features from a pre-determined intermediate layer. Multiple lay-

ers’ positions were evaluated, the computational performance is best when the layer is

closer to the network output (fewer derivatives are necessary) and with a smaller num-

ber of features (fewer variables subject to optimization). Applying on the middle of the

decoder network obtained the best trade-off between accuracy and speed.

Kontogianni et al . [93] went beyond optimizing the weights of the image being currently

annotated, proposing an optimization strategy that carries on the information learned

from the annotation of novel instances to subsequent objects. Thus, the system not only

learn during user interaction but also retains the information and reduce the annotation

burden of the following segments. During inference, they optimize the binary cross-

entropy between annotated pixels and the network output plus a penalization term with

the Memory Aware Synapses [11], that weighs the changes of the network’s parameters

according to their importance to the training data’s output (i.e. greater gradients). Thus,

updating the most only the least important parameters found during training, diminishing

the degradation of the segmentation performance of seen objects.

Concurrent to the development of this thesis, Sofiiuk et al . [151] surpassed the state-

of-the-art with a feed forward CNN architecture with a carefully engineered architec-

ture without updates during inference. This new architecture uses HRNet as the back-

bone [163], binary disks with a radius of 5 pixels in place of the of distance maps and

have an additional mask with the network’s previous prediction (empty if it is the first

click) as input. Moreover, these three additional inputs (two distance maps plus previ-

ous prediction) are processed separately by two different layers and summed together.

Furthermore, they show that poorly labeled data diminishes the model performance, and

when employing a new available dataset, LVIS [77], their performance are even better.

2.5.2 Edge Detection

In this section, we review the recent literature of edge detection with CNNs. Like seg-

mentation, it is usually an intermediate step to a more general task. The classical meth-

ods [37] were mainly used to extract characteristics from the images. With the recent

advancements employing CNNs [30, 168, 106, 164, 80] they can tackle more sophisticated

tasks, almost obtaining the segmentation entirely on their own and are part of the our

methodology described in Chapter 5.
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Figure 2.9: Comparison between CNN-based edge detection and the classical Canny al-
gorithm. Image from [168]

Edge detection (i.e. boundary estimation) has a duality with obtaining segments [129,

130] — there is an image partition (i.e. disjoint segments) from binary contours and a

hierarchical partition from fuzzy contours, as described in Section 2.4. Moreover, they

are sometimes used as an additional loss term to improve the boundary adherence of deep

learning-based object saliency [105] or segmentation [114].

Edge detection was typically considered a low-level vision problem [37], where it was an

intermediate step to some higher-level task, for example, it was used for feature extraction

for object detection [10]. In 2015, Bertasius et al . [30] shifted the paradigm showing

that high-level information could assist edge detection by employing a CNN to predict

the boundaries, it used a architecture two parallel branches, where one predicted if the

central pixel from the patch contains a contour and the other regressed the intensity of

that contour.

In parallel, the seminal work of Holistically-nested Edge Detection (HED) [168] was

proposed (Figure 2.9). It also used CNN, exploiting higher-level semantic representation

to predict boundaries. However, it treats the task as a pixel classification problem as

networks for image segmentation, but obtaining the predictions at multiple stages (i.e.

side predictions), resizing them to the original resolution during the forward pass, and

finally combining them to obtain a single final fused prediction, an diagram is shown on

Figure 2.10. Thus, it learns to predict edges at multiple scales. During training, the

loss function penalizes the fused prediction and each side prediction individually. To our

knowledge, every subsequent work on edge detection has taken inspiration or is somewhat

based on HED.

Richer Convolutional Features [106] extends HED by learning to fuse and predict the
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Figure 2.10: Diagram of Holistically-nested Edge Detection architecture and example of
side predictions and fusing. Image from [168]

side outputs with convolutional blocks with 1× 1 kernels.

Crisp Edge Detector [164] proposed a new architecture that avoids using resizing

to obtain a sharper boundary (i.e. narrow), since thick edges are an artefact from the

blurry up-sampled features. Their network consists of a forward pathway where the input

resolution is reduced and a backward pathway where the resolution is recovered. The

backward pathway process the lower resolution features back to the original size while

combining the forward features with equivalent dimensions, resulting in a single scale

prediction with the original input dimensions. Moreover, Deng [59] obtain even crispier

boundaries by combining a Dice loss penalization to the standard cross-entropy objective

function for the edge classification.

Bi-Directional Cascade Network [80] improves upon the forward and backward path-

way architecture by combining the outputs and evaluating the loss function of every stage

during the forward and backward pass; they also propose the use of dilated convolutions

to fuse the inputs of different scales.

Other existing approaches are more problem-oriented and tune the edge prediction to

a specific or surrogate task. For example, Convolutional Oriented Boundaries (COB) [112]

estimates multi-scale contours with eight different edge orientations to apply the oriented

watershed [18] transform to perform generic image segmentation. PoolNet [105] uses an

architecture with a U-shape [141] (i.e. decoder-encoder architecture) to predict salient

objects while also training to predict the objects’ boundaries over different scale during

the reconstruction step, with the goal of improving the saliency object’s prediction with

greater boundary adherence.



37

2.6 Metric Learning

In this section we review metric learning and its relationship with dimensionality re-

duction. Both of these techniques are employed at Chapter 5, metric learning is used to

facilitate the user interaction as it provide more labeled data and dimensionality reduction

to present the data in a 2-dimensional embedding to the user.

Metric learning is a subset of Machine Learning techniques that concerns with estimat-

ing a distance function between data points given a optimality criterion. It was initially

applied to boost the performance of distance-based classification methods [72, 165], such

as the k-nearest neighbors (KNN) [69]. Moreover, it has several relationships with other

tasks, such as learning a new data embedding [85, 108], clustering [169], and improving

classification methods beyond distance-based classifiers [42].

A canonical example of a change to the metric between data points, despite not always

being presented as such, is applying the whitening transform, where data is centered

around the origin and scaled by the inverse of its standard deviation. Formalized as,

given some samples xi, with mean µ and covariance matrix Σ, it can be standardized

such that the distances are computed in space with unitary variance

yi = Σ−1/2(xi − µ) (2.16)

where the power of 1/2 is the Cholesky decomposition. Measuring the squared eu-

clidean distance between two standardized samples is equivalent to computing a Maha-

lanobis [110] metric dΣ−1(xi,xj) over the original samples as follows

‖yi − yj‖22 = (yi − yj)
′(yi − yj) (2.17)

= (Σ−1/2(xi − µ)− Σ−1/2(xj − µ))′(Σ−1/2(xi − µ)− Σ−1/2(xj − µ))

= (Σ−1/2xi − Σ−1/2xj)
′(Σ−1/2xi − Σ−1/2xj)

= (Σ−1/2(xi − xj))
′(Σ−1/2(xi − xj))

= (xi − xj)
′Σ−1/2′Σ−1/2(xi − xj)

= (xi − xj)
′Σ−1(xi − xj)

= dΣ−1(xi,xj) (2.18)

Thus, computing distances on the standardized data (affine transformed) is the same

as weighting each axis of the differences by some coefficient in Σ−1. Furthermore, this is

valid for any linear transformation, L, such that we have a new embedding new embedding

yi = Lxi, resulting in a quadratic form dM(xi,xj) = (xi−xj)
′M(xi−xj) = (yi−yj)

′(yi−
yj) = ‖yi − yj‖2, where M is a positive definite matrix that optimizes some objective

criterion given a application of choice.

For distance-based classification, Weinberger and Saul [165] introduced the Large Mar-

gin Nearest Neighbor (LMNN), now known in the Deep Learning community as Triplet

Loss, to learn a metric (equivalent to a linear transformation) that reduces the classifica-

tion error of a KNN classifier. The proposed minimization objective function (Eq. 2.19),

penalizes the distance between a set of target neighbors and samples of a different class

that are within a margin inside the target neighborhood (i.e. impostors), this margin
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Figure 2.11: Illustration of LMNN learning: Before learning, adversarial samples (i.e.,
impostors) breach within class 1 margins. After, class 1 samples are self-contained within
a region. Arrows indicate the loss function gradient’s direction. Figure from [165].

is usually fixed to 1 since any change to it equivalent to the updating the scale of M ,

Figure 2.11.

LLMNN(M) =
∑

i∼j

dM(xi,xj)

︸ ︷︷ ︸

target term

+
∑

i∼j

∑

k

I(yi 6= yj)[1 + dM(xi,xj)− dM(xi,xl)]≥0

︸ ︷︷ ︸

margin violation term

(2.19)

where i ∼ j indicates the k-nearest neighbors of the same class, yi is the label of a

given sample xi, I(.) is an indicator function, that is one if the condition is true and zero

otherwise, [ . ]≥0 zeros the values when negative, penalizing only when there is a margin

violation, similar to the hinge loss. This objective function, enforces tight clusters within

neighbors of the same class (target term) and pushes adversarial samples away (margin

violation term).

While this method only estimates a single linear transformation for the whole data,

its objective function is not global, penalizing only where necessary — where there is

margin violation. To be a valid metric M is restricted to be positive define, such that,

this is a semidefinite programming problem and thus convex [33]. They show it can

be more efficiently solved with a projected gradient method by restricting M to have

positive eigenvalues during gradient descent than with a generic solver. Its computational

performance can be further improved by avoiding recomputing the KNN at every iteration

of gradient descent.

Goldberg et al . [72] proposed the Neighbor Component Analysis (NCA), where they

relax the significantly discontinuous nearest neighbor classification function to a softmax

function, where the neighbors with the smallest distance have the greatest probability of

belonging to the same class. Learning is done through gradient ascent by maximizing the

objective function

LNCA(M) =
∑

i,j|yi=yj

exp(−dM(xi,xj))
∑

i 6=k exp(−dM(xi,xk))
(2.20)

In plain English, it is maximizing the softmax probabilistic assignment between the

distances of same class neighbors. This objective function is non-convex and optimizing
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using gradient descent leads to a local maximum.

With the rise of deep learning, metric learning methods abandoned working with

linear transformations and with metrics (i.e. quadratic forms) directly, switching into

ANNs for transforming the data from the original space into the learned space, and

where the objectives are some function of a distance dl2(xi,xj) = ‖f(xi) − f(xj)‖ or

a similarity dcosine(xi,xj) = 1 − f(xi)
′f(xj) measurement between the samples from a

network embedding, f(.).

Notably, in computer vision, it gained traction in image retrieval tasks with improve-

ments in triplet mining methods [84, 175], novel loss functions [167, 137] and improvements

in video segmentation methods [42]. Musgrave et al . [127] showed that most of these novel

objective functions are prone to overfitting, requiring more laborious parameter tuning,

and simple objectives such as the original Triplet Loss (LMNN) goes a long way.

Concurrently to the development of this thesis, self-supervised methods (e.g ., Sim-

CLR [41], SEER [74]) that employ some form of metric learning between perturbed (e.g .,

flipped, crop, gaussian noise) versions of the same image started gaining attention, they

are base on the assumption that these perturbations preserve the content of the image

and the network should be robust to it. Thus, they can train a network without labeled

data.

2.6.1 Dimensionality Reduction

Similar to metric learning, dimensionality reduction estimates a new transformation of

the original data, but with the goal of obtaining a lower-dimensional representation that

preserves the information from the original high dimensional space without any labeled

data; that is, preserving the global structure of the data, local neighborhoods, or the

overall shape of a set of points (i.e. manifold).

The classical approach for linear dimensionality reduction is the Principal Component

Analysis (PCA), where the data is projected into a k-dimensional space belonging to

the k leading eigenvectors of the data’s covariance matrix — reducing the dimensionality

while preserving orthogonal axis with the greatest variance. It is also related to our

standardization example of Equation 2.18.

Due to the convoluted structures of high-dimensional data, non-linear dimensionality

reduction methods are the most widely used to greatly reduce the data dimension. They

can be roughly divided into two groups: kernel-based methods (e.g ., Kernel PCA [147])

where some prior knowledge of data points relationship is available, and it is used to

construct the Gram matrix; and neighborhood-based methods [85, 108, 120], which are

more flexible, usually requiring only a parameter to describe the neighborhood radius.

Our discussion will be concentrated on the latter since they are more flexible and obtains

a better 2-dimensional projection on most cases.

One of the classical approaches is the Stochastic Neighbor Embedding [85], that models

the data distribution with multiple Gaussians centered around each sample on the original

high dimensional space and on the artificial lower dimensional space. From this, the lower-

dimensional embedding is updated to minimize the Kullback-Leiber divergence between

these two distributions of the data, obtaining a low dimensional representation with similar
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distribution.

For each sample i they define probabilities distribution to every other point j. Such

that, the high dimensional probability is given by

pij =
exp(−dσ(xi,xj))

∑

i 6=k exp(−dσ(xi,xj))
(2.21)

where dσ(xi,xj) = ‖xi−xj‖2/2σ2, σ2 is a hyper-parameter, which can be set manually

or from function given the number of neighbors. The low-dimensional embedding, yi,

probability distribution is defined by

qij =
exp(−‖yi − yj‖2)

∑

i 6=k exp(−‖yi − yj‖2)
(2.22)

Thus, the SNE minimization objective is

LKL(p,q) =
∑

i

∑

j

pij log
pij
qij

(2.23)

and its optimization is done through gradient descent.

By evaluating the objective function’s derivative over yi we obtain additional insights

about the algorithm behavior

∂L

∂yi

= 2
∑

j

(yi − yj)(pij − qij + pji − qji) (2.24)

where, yi moves towards yj if they are closer on the high-dimensional space (pij > qij and

pji > qji) and outwards otherwise.

Note that, the probability distribution between points (Eq. 2.21 and 2.22) are the

same as the objective function (Eq. 2.20) of the NCA algorithm presented on the previ-

ous section. Hence, while the SNE algorithm minimizes the KL divergence between the

low-dimensional and high-dimensional distributions, the NCA minimizes the divergence

between the transformed data embedding and a binary encoding of same class samples

distribution, where it is one if they belong to the same class and zero otherwise.

Van der Maaten and Hinton [108] proposed a slight change to the original SNE model

motivated by the problem of crowding on high-dimensional spaces, where distances gets

more very similar as the data dimension increases, by using a long-tailed distribution on

the low dimensional embedding, thus, spreading the points further a part on the 2D space.

The distribution of choice was a t-student distribution with 1 degree of freedom. There-

fore, qij (Eq. 2.22) becomes

qij =
(1 + ‖yi − yj‖2)−1

∑

i 6=k(1 + ‖yi − yj‖2)−1
(2.25)
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and the gradient of the KL-divergence loss function is given by

∂L

∂yi

= 2
∑

j

(yi − yj)(p̃ij − qij) (1 + ‖yi − yj‖2)−1

︸ ︷︷ ︸

low-dim. smoothing

(2.26)

Its behaviour is similar to Equation 2.24, but the pushing and pulling effect diminishes

faster as the points are further a part on the low-dimensional embedding. Additionally,

they consider a symmetric high-dimensional probability, p̃ij = (pij + pji)/2.

One of the downsides of both of (t-)SNE algorithms is their high computational cost; at

every iteration of gradient descent, the distance between every sample must be recomputed

to update the low-dimensional distributions qij denominator. From this, McInnes et al .

developed the Uniform Manifold Approximation and Projection (UMAP) [120], providing

a new theoretical foundation for dimensionality reduction, proposing a much faster and,

arguably, better algorithm. A recent work [54] have shown that UMAP’s official and

widely used implementation does not comply with the original theoretical motivation.

Hence, we will mostly focus on the implemented version. Additionally, they underline

UMAP’s relationship with contrastive learning.

The algorithm steps are very similar to t-SNE, with small nuances in the equations.

It consists of three main steps: Compute a fuzzy representation of the edges, analo-

gous to t-SNE’s high-dimensional probability distribution; Initialize a low-dimensional

embedding; Optimize embedding with cross-entropy objective function, in contrast to the

KL-divergence from t-SNE.

The fuzzy edge weights are given by

pij = exp

(−max(0, ‖xi − xj‖2 − ρi)
σi

)

(2.27)

where, ρi is the distance from the nearest neighbor to i, enforcing that pij = 1 for the

closest sample, and σi is found from the following equation

∑

j

pij =
∑

j

exp

(−max(0, ‖xi − xj‖2 − ρi)
σi

)

= log2(k) (2.28)

where k is the hyper-parameter of number of neighbors and binary search can be used

to solve this equation. This represents the uniformity assumption of the UMAP.

The final graph is made symmetric with

p̃ij = pij + pji − pijpji (2.29)

And the low-dimensional membership strength is proportional to a t-distribution as

in t-SNE but with two additional parameters to adjust its shape

qij = Φ(yi,yj|a, b) = (1 + a‖yi − yj‖2b)−1 (2.30)

The parameters a, b are found by non-linear least squares to produce a smooth curve

that is similar to the high-dimensional distribution of the data, by fitting Φ(., .|a, b) to
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the function

Ψ(yi,yj|min_dist) = exp (−max(0, ‖yi − yj‖ −min_dist)) (2.31)

where, min_dist is a hyper-parameter defining the minimum distance between samples

on the projection.

Finally, the objective function is given by the binary cross-entropy between the high

and low dimensional membership strengths

LBCE(p,q) =
∑

i

∑

j

pij log

(
pij
qij

)

+ (1− pij) log
(
1− pij
1− qij

)

(2.32)

=
∑

i

∑

j

pij(log(pij)− log(qij)) + (1− pij)(log(1− pij)− log(1− qij))

∝ −
∑

i

∑

j

pij log(qij) + (1− pij) log(1− qij) (2.33)

Equation 2.32 is simplified to Equation 2.33 because the p is fixed during the opti-

mization. Moreover, pij is zero almost every where outside of the k neighborhood, thus,

the equation objective function can be further reduced to

LBCE(p,q) ∝ −
∑

i∼j

pij log(qij)

︸ ︷︷ ︸

attractive term

+
∑

i

∑

j

(1− pij) log(1− qij)
︸ ︷︷ ︸

repulsive term

(2.34)

To further speedup the implementation, the repulsive term, which is quadratic over

the number of data points, is not computed exactly, and random pairs are sampled at

every iteration of gradient descent, matching the strategy used by Word2Vec [122].

In summary, UMAP computational performance is better because it avoids recomput-

ing the whole dataset’s distance matrix at every iteration by sampling negative pairs and

using a loss function that does not require a sum over all sample on the denominator.

It is also optimized using gradient descent, such that at each UMAP’s optimization

iteration, an attractive force and a repulsive force is applied to the current embedding,

adjusting the data low-dimensional embedding. Thus, the objective function gradients’

over yi for the attractive term is

− 2ab‖yi − yj‖2(b−1)

1 + ‖yi − yj‖2
︸ ︷︷ ︸

attractive smoothing

pij(yi − yj) (2.35)

and the for the repulsive term is

2b

(ε+ ‖yi − yj‖2)(1 + ‖yi − yj‖2b)
︸ ︷︷ ︸

repulsive smoothing

(1− pij)(yi − yj) (2.36)

Figure 2.12 gives additional insight into the behavior of these two forces. The attractive
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Figure 2.12: Shape of UMAP smoothing terms of attractive and repulsive forces according
to their squared distance (i.e. ‖yi − yj‖2) with fixed a = 1.58 and b = 0.895, estimated
from MNIST dataset. The repulsive term (orange line) goes abruptly to zero as the hinge
loss from LMNN.

force has a longer tail, pulling neighbors with stronger high-dimensional membership closer

despite their distances on low dimensional embedding. While the repulsive strength is very

similar to the Triplet Loss (Eq. 2.19), going abruptly to zero as it pushes samples away,

having a small high-dimensional membership strength (i.e. significant pushing force) when

they are inside a close range and being null almost everywhere outside of this small radius.
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Chapter 3

Interactive Segmentation by Dynamic

Trees

In this Chapter we present the first algorithmic contribution of this thesis. As described in

the previous pages, image segmentation is challenging and often requires users’ assistance

for correction.

Among the many established approaches to solving the interactive segmentation prob-

lem, graph-based algorithms from user-defined markers have showed to be quite effec-

tive [49], enjoying a developed theoretical background [12, 43, 44], and being easily ex-

tendable (sometimes no change is necessary) to the semi-supervised classification domain

(i.e. transductive learning) for non-image data [13].

However, most of these approaches resolve the segmentation on static graphical mod-

els [64, 35, 75, 51, 49], such that unlabeled data information is only partially used during

the segmentation process, providing a pathway to propagate labels over the graph, but

without updating the propagation’s strength as labels are estimated.

Some techniques [143, 158] acquire additional information from the unlabeled sam-

ples, updating the likelihood of each pixel through multiple executions, exploiting the

algorithm’s intermediate label assignment of the originally unlabeled pixels to compute a

likelihood model until convergence of the label assignments. More specifically, the unary

term from the objective function (Equation 2.1) is re-estimated using the results from the

previous iteration of the algorithm. Being the same as an Expectation Maximization [57]

process, where at one iteration the label assignment is computed maximizing the objective

function given a data distribution and in the following iteration its probability density

function is updated given the estimated labels.

In this chapter, we present a novel approach that dynamically estimates the graph’s

arc-weight (i.e. pairwise term) as the segmentation is computed in a region growing fash-

ion on a single algorithm execution. Thus, improving the model with unlabeled data

information as the segmentation advances. Our experiments show that this approach

outperforms all classical methods with static arc-weights of the Power Watershed fam-

ily [64, 35, 75, 51, 49] and is competitive with approaches that re-estimate the unary

terms [158] and the state-of-the-art [38].

Originally, our idea was to use a classifier to learn the pattern of the competing regions

(labels) as they propagated. However, this was shown to be ineffective in two ways, it



45

(a) (b) (c)

Figure 3.1: (a) Original image with foreground (red) and background (blue) markers;
Segmentation results delineated by magenta contour with: (b) static arc-weight [64]; (c)
dynamic arc-weight [36].

was computationally intensive and made the algorithms less interactive, and it was not

accurate, underperforming due to poor generalization. To our surprise, using the mean

resulted in the best results.

The following sections presents our motivation, the proposed framework, the algorithm

and examples of dynamic arc-weight estimation methods, the experimental results, and

the conclusion.

3.1 Motivation

Existing methodologies solve interactive segmentation on an image graph with static arc-

weights. These weights are prone to failing to accurately define the object’s boundary

due to noises, image-related artifacts or by having discrepant features from annotated pix-

els. This is confirmed when several different criteria cannot solve a segmentation without

considerate user effort (i.e., annotation) despite the object seeming somewhat separated

from the background, Figure 3.1. Thus, we propose an algorithm that outperforms exist-

ing approaches by using a moving average to provide a more robust arc-weight estimate,

some variations of this algorithm are provided, and its relationship with existing methods

is discussed.

3.2 Methodology

Existing algorithms can solve interactive segmentation in real-time only on limited sce-

narios; for example, the maxflow-mincut algorithm [34] is NP-hard beyond the binary

case, the number of linear systems required to solving the Random-Walk [75] increases

with the number of distinct labels, and on both cases the final label of any pixel is only

fixed upon the algorithm’s convergence. Moreover, they can only be executed on graphs

with fixed arc weights, restricting the objective functions that they can optimize.

In contrast, the IFT framework, presented in Section 2.3, performs the segmentation

in a region growing manner, fixing nodes with immutable labels as the optimum-path

propagates, and obtaining satisfactory results even when its original assumptions [44]

are violated [153, 124, 56]. Moreover, the IFT path-cost map C and the predecessor P
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save how strongly connected a node is to its source and the path required to reaching it.

Thus, from C we have a measurement that is proportional to the confidence of each node

labeling.

From this, we propose that additional information beyond the labeled nodes can be

used to improve the optimum-path routing between nodes with weak connectivity. For

that, we propose to explore the information of nodes with strong connectivity to provide

this additional data. A simple, yet effective criterion to achieve this goal is to measure

how much the weakly connected node differs from the average of each strongly connected

component, considering a different arc weight to each connected component. Thus, mea-

suring how much a weakly connected nodes belongs to the strongly connected clusters, a

reasonable measurement is the pixel’s color difference to the strongly connected cluster’s

average. To our knowledge, this is the first time dynamic arc weights have been explored

for image segmentation.

To perform this strategy, a naive algorithm could execute the IFT multiple times. At

every IFT execution, it would select a non-decreasing subset of strongly connected pixels;

their average would be computed and used to update the weakly connected samples’ arc

weights; the subsequent executions would select a greater number of strongly connected

pixels until no pixels would required to have their arc weights recomputed — all pixels

would be permanently labeled.

However, this leads to undesirable properties: The IFT is executed multiple times,

each time for a different threshold in C to select the subset of strongly connected nodes,

significantly decreasing the algorithm speed; It requires multiple arc-weights computations

for the weakly connected nodes, one for each strongly connected cluster (one for each

average), further increasing the memory footprint and complicating the algorithm; And

computing the average multiple times further decreases the algorithm’s computational

efficiency.

Hence, we propose to solve the segmentation is a single IFT execution using dynamic

programming, which is already an essential requirement for an efficient implementation

of the IFT algorithm. The strategy is as follows, at every iteration, only the unlabeled

nodes connected to labeled regions are evaluated, so only these arc weights require re-

computation. Thus, the burden of recomputing multiple arc weights between every unla-

beled node is eliminated. Note that, by increasing the C’s threshold at every interaction,

the set of strongly connected nodes never decreases, only including additional nodes at

every step. Hence, we save a moving average for each group and update incrementally

as strongly connected nodes are removed from the IFT’s queue. Therefore, unlabeled

arc weights are only computed when necessary, and the groups’ averages are updated

on-the-fly.

Our method, Dynamic IFT, is presented on Algorithm 2, minor adjustments might be

necessary on line 14 to extend to additional arc-weight functions presented on the next

section.

Extending the IFT (Algorithm 1), an extra mapping R : V 7→ V is used to save the

nodes’ roots. Lines 1-11 initialize the algorithm, line 13 selects the strongest connected

node that has not propagated its label yet, line 14 updates the root node group, line 16-17

computes the path-cost, which can be defined in different ways and will be explained next,
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Algorithm 2 Dynamic Arc-Weight IFT

Input: Graph G = (V,E,w), seeds’ set S
Output: Cost map C, Root map R, Predecessor map P , label map L and set of trees’

averages {Ti| i ∈ R}
Auxiliary: Priority queue Q = ∅, temporary variable pathcost

1. For each p ∈ V

2. C(p)←∞
3. R(p)← p

4. P (p)← nil

5. TR(p) ← ∅
6. For each Si ∈ S
7. For each p ∈ Si

8. C(p)← 0
9. L(p)← i

10. For each p ∈ V

11. Insert p in Q

12. While Q 6= ∅
13. Remove p from Q, such that p = argmin∀q∈Q{C(q)}
14. TR(p) ← {TR(p) ∪ p}
15. For each q ∈ V | (p, q) ∈ E, q ∈ Q

16. Estimate w(p, q) as described in Section 3.2.1
17. pathcost← max{C(p), w(p, q)}
18. If pathcost < C(q)
19. C(q)← pathcost

20. R(q)← R(p)
21. P (q)← p

22. L(q)← L(p)

and the lines 18-22 extends the path routing if a better path was found.

3.2.1 Arc-weight Estimation

This section discusses multiple strategies for arc-weight estimation (line 16 of Algorithm 2)

that can be easily applied to the Dynamic IFT framework, resulting in variants of the

moving average arc weight for different assumptions over the regions of interest properties

(i.e. pixels’ features).

For some applications, notably in the bioimaging area, it would be reasonable to

assume that each object has a homogeneous characteristic. Hence, a single average per

object can be computed with the arc-weight function

wL(p, q) = ‖µL(p) − I(q)‖ (3.1)

where µL(p) is the average of I(.) for every conquered node with the same label as p.

This assumption is violated in many cases, especially in natural imaging, because ob-

ject features have distributions with multiple modes. From our experience, each optimum-

path tree ends up acquiring a distinct characteristic. Thus, we can assign one average for
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each optimum-path tree,

wR(p, q) = ‖µR(p) − I(q)‖ (3.2)

where µR(p) is the features’ average of nodes rooted in R(p). Thus, indexing each average

through its tree roots.

The arc weight can also take into account multiple sources from the same label, enjoy-

ing global information at the cost of computational performance; this arc weight is given

by

wG(p, q) = min
∀r∈§L(p)

‖µr − I(q)‖ (3.3)

where µr is the features’ average of nodes rooted in r. At every iteration multiple roots

are evaluated, selecting the one that offers the least cost. Note that, this increases the

computational complexity since multiple tree are evaluated at each arc-weight estimation,

in contrast to one in the other scenarios.

Further, it could be the case where optimum-path features’ distribution shifts along

the graph, so the standard average would not be a reasonable estimate. Thus, we propose

using an average with exponential decay along the paths, so nodes closer to the tail along

the predecessor path have more significant influence over the extending path arc weight,

given by

wexp(p, q) = ‖µP (p) − I(q)‖
where

µP (p) = (1− α)I(p) + αµP (p)

By defining P 2(p) = P (P (p)) we can further expand the equation using recursion

µp = (1− α)I(p) + αµP (p)

= (1− α)I(p) + α[(1− α)I(P (p)) + αµP (P (p))]

= (1− α)α0I(P 0(p)) + (1− α)α1I(P 1(p)) + α2µP 2(p)

· · ·
= (1− α)

∑

i=0

αiI(P i(p)) (3.4)

The parameter α is a value between 0 and 1. When α = 0 it is the standard IFT; when

α the inverse of the number of predecessors, it is the predecessor path average without

weighting.

Additionally, this arc-weight function allows the computation of the IFT differentially

(DIFT) [62], a characteristic that is not enjoyed by the other functions.

For Equations 3.1- 3.3 it is not possible to guarantee the algorithm results would be the

same once a a optimum-path tree is pruned. For example, given a optimum-path forest

computed with one of the given arc-weight functions and the fmax connectivity function

(Eq. 2.7), the path cost is non-decreasing as required by the DIFT. Now, lets suppose

we have two optimum-path branches A and B belonging to same the average (e.g . every

node has the same root in the case of wR, Eq. 3.2) and A was conquered before B, any

operation that extends or prunes A will make the path costs in B obsolete because it

was computed with values that no longer belongs to the arc-weight average. Hence, the
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Intersection over Union

Method Grabcut Andrade [14] Grabcut Gulshan [76] Geodesic Star [76]

RW [75] 0.727± 0.159 0.525± 0.179 0.517± 0.185
GC [34] 0.746± 0.156 0.488± 0.226 0.443± 0.228
WS [50] 0.800± 0.138 0.583± 0.219 0.507± 0.217
OC [158] 0.728± 0.207 0.628± 0.267 0.405± 0.265
LP [38] 0.764± 0.158 0.627± 0.188 0.564± 0.204
PW [49] 0.800± 0.138 0.585± 0.219 0.507± 0.218
IFT [64] 0.798± 0.137 0.585± 0.217 0.506± 0.217
DTL [36] 0.691± 0.192 0.607± 0.242 0.452± 0.247
DTexp [36] 0.816± 0.132 0.603± 0.207 0.528± 0.218
DTR [36] 0.832± 0.133 0.691± 0.185 0.602± 0.204

Table 3.1: Quantitative results of segmentation on Microsoft’s datasets.

Equations 3.1- 3.3 cannot be updated efficiently because they required recomputing paths

from different branches.

The dynamic arc weight with exponential decay (Eq. 3.2.1) does not display this

behavior because each node store its own moving average, they are never updated after

they leave the queue and each average only affects the optimum-path branch rooted in

it self. Hence, the tree removal operation (i.e. pruning) would remaining the same as

proposed by Falcão et al . [62].

3.3 Experimental Results

To evaluate the proposed methodology, we used the Microsoft’s datasets, GrabCut [143]

that contains 50 images and the markers provided by Andrade and Carrera [14], and

Geodesic Star dataset [76] that contains 151 images and their own set of markers. Note

that, Geodesic Star’s dataset contains the images from GrabCut, but the markers set is

different (very reduced), thus yielding very different results.

We also evaluated on the DAVIS [133] dataset of foreground segmentation on videos,

following [89], 10% of the frames were sampled resulting on 345 images. Since, markers

are not provided, we defined the foreground seeds as the erosion with radius 15 from the

ground-truth masks and the backgrounds seeds as the complement of a dilation with the

same radius — images where the foreground disappeared from the erosion were discarded,

this only occurred 5 times.

We compared with the before mentioned methods (Section 2.2), GraphCut (GC) [34],

Random Walks (RW) [75], Watershed Cuts (WS) [50], Image Foresting Transform (IFT) [64],

Power Watershed with q = 2 (PW) [49], and more recent approaches, One Cut (OC) [158]

and Laplacian Coordinates (LP) [38]. The images were evaluated on the RGB color space

and the arc-weights are a function of the pixels’ color Euclidean distance. The wexp

parameter α was fixed to 0.5.

The annotations from [76] are not very informative, since it only contains about four

markers per image that cover a small area of both the background and foreground, Fig-



50

Intersection over Union

Method DAVIS [133]

RW [75] 0.784± 0.148
GC [34] 0.761± 0.148
WS [50] 0.787± 0.143
OC [158] 0.601± 0.218
LP [38] 0.809± 0.140
PW [49] 0.788± 0.143
IFT [64] 0.788± 0.143
DTL [36] 0.676± 0.145
DTexp [36] 0.798± 0.142
DTR [36] 0.822± 0.136

Table 3.2: Quantitative results of segmentation on DAVIS dataset.

ure 3.2. The markers from [14] contains a more carefully selected set of scribbles. This

can be seen when comparing the two first columns of Table 3.1 over the images of the

Grabcut dataset.

Figure 3.2 presents the segmentation results of the multiple methods on the Microsoft’s

dataset with the Geodesic Star markers. The results of the image-foresting transform

(IFT), watershed (WS), and power watershed (PW) are almost identical as expected

given their close relationship described in Section 2.2. Since the One-Cut (OC) does not

constrain connectivity, it miss-classifies some regions in the background that are similar

in color to the object of interest, mushroom. The Dynamic Tree Label (DTL) obtains

satisfactory result due to the homogeneous characteristics of the object, which can be

effectively summarized in a single mean, the same can be side to DTR, which extends it

to multiple means, the variant with exponential decay (exp), produces results similar to

the watershed. Hence, an increase in the parameter α might yield results more similar to

the other variants.

Figures 3.3, 3.4 displays the results of the DAVIS dataset. In Figure 3.4, the region of

interest contains multiple colors, hence DTL fails, segmenting only the darker blue regions

correctly. The RW and LP do not segment the woman’s limbs due to their tendency

smoothing of boundaries. The remaining algorithms produce reasonable results. Notably,

DTR and DTexp can segment the baby’s foot due to their strong adaptation to local

characteristics.

3.4 Conclusion

In this chapter, we proposed a novel approach for interactive image segmentation that

updates the arc weights on the fly. It achieved superior performance to existing static

arc-weighed methods on multiple datasets even when compared to methods with dynamic

unary values (e.g . One Cut). In between the article publication and the thesis writing,

several methods extended presented methodology [24, 20, 16], showing, without doubt,

the advantage of using adaptive arc-weights.
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Markers Ground-truth RW GC

WS OC LP PW

IFT DTL DTexp DTR

Figure 3.2: Qualitative results on Microsoft’s dataset. Foreground markers are blue and
background are red. Where the presented DTs variants are regarding the labels (L),
exponential decay (exp) and root (R).



52

Markers Ground-truth RW

GC WS OC

LP PW IFT

DTL DTexp DTR

Figure 3.3: Qualitative results on DAVIS. Foreground markers are blue and background
are red, generated from erosion and dilation of ground-truth. Where the presented DTs
variants are regarding the labels (L), exponential decay (exp) and root (R).
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Markers Ground-truth RW

GC WS OC

LP PW IFT

DTL DTexp DTR

Figure 3.4: Qualitative results on DAVIS. Foreground markers are blue and background
are red, generated from erosion and dilation of ground-truth. Where the presented DTs
variants are regarding the labels (L), exponential decay (exp) and root (R).
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On the next chapter its synergy is evaluated with a contour correction mechanism,

further improving the image annotation process.
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Chapter 4

Interactive Correction from Contours

by Grabber

As described previously, interactive image segmentation requires object localization and

delineation, and it could be followed by an enhancement and verification steps. Object

localization may involve the indication of interior and exterior markers, points along the

object boundary, a bounding box around the object, the information about its pose, and

its approximate position in the image domain, for instance. Object enhancement improves

the contrast between object and background to facilitate their separation (e.g . arc weight

estimation, an object saliency map, an edge detection image). Object delineation defines

the precise spatial extension of the object in the image and it can usually improve when

using a suitable object enhancement. Object verification may be done by the user or by

optimizing some criterion function. As accurate segmentation rarely works from a single

input action, the user usually verifies the result and takes actions for correcting errors,

such that all previous steps can be improved along with multiple user interventions.

Object localization and verification are better performed by humans while machines

usually outperform humans in object enhancement and delineation. An ideal method

for interactive image segmentation should explore the complementary abilities of humans

and machines to minimize user effort while maintaining complete user control over the

segmentation process [65]. For that, the user’s actions to correct segmentation should

be effective, not causing errors in other parts of the object where the results are already

correct.

In the recent years, interactive image segmentation methods have considerably evolved.

Initially, the methods did not learn the parameters of the segmentation model [31, 91].

Many methods then started learning a model but fixing it during segmentation [65, 47,

125, 170, 111]. Other approaches learn and update a model from user inputs during

segmentation [143, 171, 154, 36] and a few most recent ones start from a pre-trained

model that is adapted from user inputs during segmentation [89, 150, 93].

However, while classical approaches, such as live-wire and live-lane [65], can provide

considerable user control over the segmentation process at the cost of a higher user effort in

more complex boundaries, the existing methods still lack user control during segmentation

correction. See the comparison in Figure 4.1 for a recent method results, Feature Back-

propagation Refinement Scheme (fBRS), which is based on deep neural networks [150].
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: (a) Original image with ground-truth segmentation. (b), (c), (d) Results
of fBRS [150] after 1, 6, and 25 iterations, respectively, of an oracle user that inserts
internal (blue) and external (yellow) points. One can see that corrections in (c) ruin
correct parts of the result in (b). (e) Grabber can improve the result from iteration 1
of fBRS, delineating an optimum contour constrained to pass through estimated anchor
points (orange) by letting the user move, add, and remove anchor points, (f); Grabber
convergences faster with higher accuracy with 13 fewer user interventions.

We address the above problem with Grabber — a tool to improve convergence (user

control) in interactive image segmentation. Grabber is inspired by the high user control

offered in methods based on optimum boundary segments between user-selected anchor

points [65, 126, 66, 123, 46, 98], but it provides a unique way to complete segmentation

from any other initial method. It estimates anchor points from a segmentation mask and

sort the points in one boundary orientation, rather than requiring the user to provide a

sequence of anchor points in a given order along the boundary as in Live-Wire [65]. The

object’s delineation is obtained by an optimum contour constrained to pass through the

anchor points. It can also leverage object’s properties from the initial coarse segmentation

(e.g . internal and external probability density maps) to improve boundary delineation.

The user can control object delineation in any part of the boundary by adding, removing,

and moving anchor points.

In order to demonstrate the impact of Grabber to increase convergence in interactive

segmentation, we integrate it with two recent approaches, a pixel classification method

based on deep neural networks, fBRS [150], and a graph-based method, named Dynamic

Trees (DT) [36, 67] presented in the previous Chapter. Thus, Grabber is not meant to

directly compete with other approaches but to improve them, as soon as the user experi-

ences difficulty in convergence or realizes that Grabber can complete segmentation faster

than the initial method. Figures 4.1(e)-(f) illustrate its potential to improve interactive

segmentation when integrated with fBRS.

As main contributions, we present a tool, named Grabber, to improve convergence in

interactive segmentation, when integrated with other approaches; and two hybrid meth-
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ods, fBRS-Grabber and DT-Grabber, that result from that integration.

4.1 Methodology

For a given segmentation mask, we estimates anchor points along the boundary of the

mask and let the user manipulate them: add, remove, and move points. The initial anchor

points are obtained in a desired order (clockwise or anti-clockwise) using the Douglas-

Peucker algorithm [60] with a curvature-approximation threshold ε. It transforms the

contour of the mask into line segments and uses their extreme points as anchors. Then it

estimates the object boundary as an optimum contour constrained to pass through those

anchor points. For that, Grabber uses the Image Foresting Transform (IFT) algorithm

from Section 2.3.

Let S = {s1, s2, . . . , sn} ⊂ V be the set of anchor points in a given order, such that

si ≺ si+1, i = 1, 2, . . . , n − 1. The IFT algorithm computes one optimum contour L
constrained to pass through anchor points by following their order in S. This requires

n executions of the IFT algorithm to find the minimum-cost segments from si to si+1,

i = 1, 2, . . . , n − 1, and then from sn to s1. The of set contour segments, L, is empty

before the first execution. After each execution 1 ≤ i < n, L returns with the vertices of

the optimum path P ∗(si+1) with terminus si+1 and root s1. For the last execution n, s1
is removed from L in order to close the contour as an optimum path P ∗(s1) with root in

a vertex s whose P (s) = s1. The path-cost function f may be defined as

f(〈u〉) =

{
0 if u = s1 and L = ∅,
+∞ if u ∈ V \ L,

f(πu · 〈u, v〉) = f(πu) + wI(u, v), (4.1)

wI(u, v) = exp

(

−‖I(lu,v)− I(ru,v)‖
σI

)

(4.2)

where lu,v and ru,v are the left and right vertices of an edge (u, v) ∈ E, respectively,

and σI > 0 is a hyper parameter, its choice depends on the observed visual differences

between the immediate interior and exterior of the boundary. It is proportional to the

inverse of the p parameter from the PW framework, Section 2.1. When small it adheres

more to the local features, as it increases it smooths out tending to a geodesic over the

image grid.

Algorithm 3 presents the contour-based object delineation of Grabber. In Lines 1-2,

it executes the trivial path-cost initialization of Equation 4.1, all paths initially trivial.

The main loop (Lines 3-5) computes the minimum-cost segments from si to si+1, i =

1, 2, . . . , n−1. It then removes s1 from L in Line 6, updating its trivial path cost according

to Equation 4.1, to close the contour in Line 7. Every time an optimum segment is

computed, it is added to the contour in L.

Algorithm 4 shows how to compute and concatenate optimum segments in L. Line 1

inserts the source s in a priority queue Q and in an auxiliary set U . Set U must contain

all vertices inserted in Q during the algorithm in order to restore the costs of trivial paths,

according to Equation 4.1, for the subsequent execution. Note that the source s is always
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Algorithm 3 Contour-based segmentation algorithm

Input: Graph G = (V,E,wI) and anchor-points set S.
Output: Optimum object contour L.
Auxiliary: Path-cost map C and predecessor map P .

1. For each u ∈ V

2. C(u)←∞
3. P (u)← u.
4. L ← ∅
5. i← 1
6. C(s1)← 0.
7. While i < n

8. (C,P,L)← Optimum-Segment(G, si, si+1, C, P,L).
9. i← i+ 1
10. L ← L \ {s1}
11. C(s1)←∞
12. (C,P,L)← Optimum-Segment(G, sn, s1, C, P,L)
13. Return L.

inserted in Q with optimum cost C(P ∗(s)), as obtained in the previous execution. The

optimum segments already in L have lower costs than that and the remaining vertices are

available to be conquered by a new segment from s. The main loop (Lines 2-17) removes

the vertex u with minimum path cost from Q in Line 3. If u is the destination point t

(Line 4), the algorithm concatenates the previous segments to the optimum segment from

s to t (Lines 5-7), restores the trivial paths and their costs according to Equation 4.1

(Lines 8-9), and resets Q and U to end the loop. While u is not the destination point, the

algorithm visits its adjacent vertices (Lines 12-17) to which the extended paths πu · 〈u, v〉
with cost pathcost = f(πu · 〈u, v〉) (Line 13) may be lower than the cost C(v) = f(πv) of

the current path πv. If this is the case, then path πv is replaced by πu · 〈u, v〉 when P (v)

is set to u in Line 16. The cost C(v) and status of v in Q and U are updated accordingly

(Lines 15-17).

4.1.1 Integration and Usage of Grabber

Segmentation starts with another interactive or automatic method and concludes with

Grabber. When integrating it with an interactive approach, the user should change to

Grabber as soon as corrections with the first method are not converging.

Figure 4.2 illustrates one example where the user draws internal and external markers

(Figure 4.2(b)) to separate the object in Figure 4.2(a) from the background by using

DT [36, 67].

We demonstrate in Section 4.2 that the integration of Grabber and DT can improve

user interaction convergence. Figure 4.2(c) shows the result of Grabber when the algo-

rithms of this chapter are used as proposed. Additionally, the segmentation mask, allows

to extract object information — e.g ., Gaussian Mixture Models (GMMs) from the interior

(Figure 4.2(d)) and exterior (Figure 4.2(e)) of the mask — and use that information to

replace the edge-weight function wI(u, v) in Equation 4.2 by the one below
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Algorithm 4 Optimum-segment finding algorithm

Input: Graph G = (V,E,wI), source s ∈ V , destination t ∈ V , previous path-cost map
C, predecessor map P , and contour set L.

Output: Updated path-cost map C, predecessor map P , and contour set L.
Auxiliary: Priority queue Q = ∅, set U = ∅, and temporary variable pathcost

1. Q← Q ∪ {s}, and U ← U ∪ {s}.
2. While Q 6= 0
3. Remove u from Q, such that u = argminv∈Q{C(v)}.
4. If u = t then

5. While u 6= s

6. L ← L ∪ {u}
7. u← P (u).
8. L ← L ∪ {s}.
9. For each u ∈ U \ L
10. C(u)←∞
11. P (u)← nil.
12. Q← ∅
13. L ← ∅
14. Else

15. // IFT iteration
16. For each v | (u, v) ∈ E and C(v) > C(u)
17. pathcost← C(u) + wI(u, v)
18. If pathcost < C(v) then

19. If v ∈ Q then Q← Q \ {v}.
20. C(v)← pathcost

21. P (v)← u

22. Q← Q ∪ {v}
23. U ← U ∪ {v}.
24. Return (C,P,L).
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Grabber: (a) input image; (b) initial segmentation with DT [36] from object
(blue) and background (pink) markers; (c) the resulting object contour from Grabber;
Gaussian density maps for the (d) object and (e) background; (f) final segmentation with
Grabber, after anchor-point manipulation.

wG(u, v) = wI(u, v) exp

(

−
∑

λ∈{0,1} |Dλ(ru,v)−Dλ(lu,v)|
σG

)

(4.3)

where Dλ(.) are the Gaussian density maps for each label λ ∈ {0, 1} (i.e. background

and object), and σG > 0 is a hyper-parameter. Figure 4.2f shows the final result of

Grabber using Equation 4.3 and after manipulating anchor points. The density maps can

be updated after each iteration of the proposed technique. The choices of σI in wI and σG
are important to control the balance between local image features and the density maps.

The initial number of anchor points in Grabber is an empirical parameter, but one can

explore gradient and salience information along the border of the mask to estimate more

effective points. We chose points based on the simplification degree given the curvature-

approximation of the original contour. When the user clicks on one anchor point vk, the

paths from the previous point vk−1 and to the next point vk+1 are redefined by running

Algorithm 4 on the affected contour segment (Figure 4.3). Therefore, Grabber can limit

user interaction to a single pair of contour segments of the object’s border, providing the

desired control over the correction process.

When a new anchor point is added by the user, the contour is not immediately rede-

fined since the user might want to move the point to a better location. A good practice is

shown in Figure 4.4. To improve a contour section and keep the rest unchanged, it is best

to add points at the extremities of that section and then make further point manipulation

inside the newly defined contour segment.

Object information may be obtained by different strategies. In [153], the authors
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Figure 4.3: Contour-based correction of a border section. (a) Initial segmentation with
DT [36] followed by Grabber. (b) The middle anchor point is moved to the object’s border
and Grabber fixes delineation in red. The previous segment (error) is shown in cyan.

(a) (b) (c)

Figure 4.4: A good practice in Grabber: (a) initial contour for correction; (b) points
are added to both extremities of a contour section; (c) a new point is added on that
section and moved to a better location; (d) the resulting correction is shown in red with
the previous incorrect delineation in cyan. Note that the rest of the contour remains
unchanged.

present an intelligent approach to select the pixels from internal and external markers

that best discriminate the object and background for image enhancement as an object

saliency map. Live Markers [154] uses this method for edge-weight estimation in the IFT

algorithm. It also allows the user to draw live-wire segments on the border of the object,

creating internal and external markers around them, but the segmentation is always a

watershed transform from those markers. Another possibility is to use the object map

predicted by the initial segmentation method from internal and external clicks during

segmentation by fBRS [150]. Figure 4.5 illustrates the object maps obtained by the

method in [153], when running Live Markers, by GMM from the segmentation mask of

Live Markers (map D1 in Equation 4.3), and by the network in fBRS. In general, Grabber

can improve contour-based delineation when it incorporates object information in edge-

weight estimation. Assuming that O(u) is the object map value from some of these

approaches, Equation 4.2 may be replaced by

wC(u, v) = wI(u, v) exp

(

−|O(ru,v)−O(lu,v)|
σO

)

(4.4)
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Figure 4.5: (a) Original image. Object saliency maps by (b) GMM probability from a
large sheep mask (red boundary), (c) fBRS prediction from a single click (red dot), and
(d) the method in [153] from background (cyan) and foreground (red) markers.

4.2 Experiments and Discussion

This section evaluates Grabber combined with two methods, fBRS [150] and DT [36].

The resulting approaches are called fBRS-Grabber and DT-Grabber. We indicate the

edge weight function used in each case — e.g ., DT-Grabber-wI when Grabber uses Equa-

tion 4.2.

The experiments used an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz CPU and

a Titan X with 12 GB of memory. We adopted a stress experiment similar to the con-

vergence analysis from [150]. It measures the number of interactions required to achieve

a fixed threshold of Intersection over Union (IoU) [170, 111, 89, 150] — i.e. the num-

ber of clicks/anchor manipulations required to achieve 0.95 IoU (NoC@0.95) limited to

50 interactions. And the total of images which did not achieve the desired score given

the threshold is also reported. The experiments used 100 images of the testing set of

Berkeley [115] from [119], and a subset provided by [89], with 10 percent of the images

(video frames) from DAVIS [133], 345 images. The ground-truths of the datasets were

pre-processed, removing disconnected objects and holes to facilitate the experiments with

a proposed robot for Grabber (Section 4.2.1).

ResNet101, the network used in fBRS, was pre-trained on SBD [78], and it is used

as provided by [150]. The robot user for fBRS and DT is the same [170], it only adds

internal and external clicks to largest error. fBRS crops a region around the object and use

distance maps of the clicks to improve an object saliency map, solving segmentation by

thresholding the network output. In DT, the clicks define the object as an optimum-path

forest rooted at the internal ones.

We switched from fBRS (or DT to Grabber when the IoU changed less than 1%
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(a) (b) (c) (d) (e)

Figure 4.6: Example of robot iterations. The blue, orange and purple lines represent
current, desired, and removed contour segments, respectively, and the red dots are anchors.
Red, blue, and green arrows point to positions where anchors should be deleted, moved,
or added. (a) Initial segmentation; (b) after deleting two anchors; (c) after moving an
anchor; (d) after adding an anchor; (e) after moving the anchor added in the previous
iteration.

for three consecutive interactions and Grabber started without resetting the number of

interactions. Its parameters were optimized by grid-search on 150 random images from

SBD [78], with range from 0.25 to 1.5 with step size of 0.25 for σ’s, and 100 to 500 with

a step size of 100 for ε, resulting in ε = 100, σI = 0.5, and σO = 0.25. The combination

with the lowest standard deviation was chosen when a tie occurred.

4.2.1 Proposed Robot User for Grabber

To simulate an user, Grabber’s robot starts locating a reference pixel for each anchor. The

reference pixel is the closest one to the anchor on the ground-truth border. It then locates

the closest point to each reference pixel on the segmentation’s border. If an anchor is not

the closest point to its own reference pixel (i.e. competing anchors), the robot removes that

anchor (Figure 4.6(a)-(b)). This behavior imitates the action of a user removing anchors

from regions where Grabber should update the contour without adding new anchors. The

distance used is the length of a geodesic path in the component between the GT and the

segmentation mask, thus avoiding tangling the contours in non-convex shapes.

After that, the robot lists all pixels at which the GT and segmentation overlap. For

every pair of consecutive intersection points between the overlapping GT and segmentation

borders, it computes the area between the borders and tries to correct these regions in

decreasing order of area.

Given the current largest and incorrect region, the robot adds a pair of anchors on

its extremities to limit the changes to the local contour, just as the strategy shown in

Figure 4.4. This is a key factor to maintain user control over the segmentation process.

Then, the robot moves the furthest anchor from its reference pixel onto the GT border

(Figure 4.6(b)-(c) and (d)-(e)). If there are no anchors on the segment, the robot adds

one anchor and moves it (Figure 4.6(c)-(d)).

To better emulate a real user, the anchor target is around the middle of the GT contour

segment on the pixel with the weakest gradient. Thus, imposing a constraint where the

difference between foreground and background could be non-existent and more needed,

Figure 4.6(d).
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4.3 Results

Tables 4.1-4.4 show that the integration of fBRS and DT with Grabber can improve

convergence and, at the same time, reduce the average response time of the interactions,

and increase the mean IoU. Table 4.1 shows that Grabber can considerably reduce the

number of images to which the main methods could not achieve 0.95 IoU in 50 interactions

to almost half. It can also reduce the average number of interactions to achieve 0.95 IoU.

Grabber was more required for DT than for fBRS, which was expected since DT is simpler.

However, fBRS-Grabber-wC performed worse than fBRS-Grabber-wI in DAVIS and did

not make much difference in Berkeley with respect to fBRS-Grabber-wI .

Method Dataset # Images ≥ 50 NoC@0.95 Grabber (%)

fBRS Berkeley 23 16.77 -
fBRS-Grabber-wI Berkeley 12 14.53 42.0
fBRS-Grabber-wC Berkeley 12 14.02 43.0

DT Berkeley 31 27.71 -
DT-Grabber-wI Berkeley 22 26.77 71.0

fBRS DAVIS 133 24.83 -
fBRS-Grabber-wI DAVIS 93 24.49 65.8
fBRS-Grabber-wC DAVIS 100 24.74 65.8

DT DAVIS 163 39.07 -
DT-Grabber-wI DAVIS 139 37.85 91.6

Table 4.1: For each method and dataset, the number of images which it could not achieve
0.95 IoU in 50 interactions (bold indicates better), average NoC@0.95, and percentage of
images that required Grabber.

Table 4.2 presents the average number of interactions until grabber initialization. To-

gether with the average NoC@0.95 in Table 4.1, it shows that Grabber’s executions are

non-trivial because they stand for a large IoU gain.

Table 4.3 shows that Grabber can reduce the average response time for the interactions

in both methods. Indeed, when fBRS stops, the response time of Grabber is negligible

(real time). One may have an idea about that by observing the response times of DT-

Grabber-wI .

Table 4.4 shows that Grabber can increase the effectiveness of the main approach,

especially in Berkeley. DAVIS is a more challenging dataset and the proposed robot for

Grabber requires improvements to fully emulate a real user. It is also worth noting that

Method Dataset # Clicks Dataset # Clicks

fBRS Berkeley 5.73± 4.32 DAVIS 7.48± 4.98
DT Berkeley 13.21± 6.69 DAVIS 17.19± 8.27

Table 4.2: For each starting method and dataset, the average number of interactions until
Grabber’s initialization.
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Method Dataset Time per Inter. Dataset Time per Inter.

fBRS-Grabber-wI Berkeley 0.218 DAVIS 0.457
fBRS-Grabber-wC Berkeley 0.225 DAVIS 0.458
fBRS Berkeley 0.738 DAVIS 1.798
DT Berkeley 0.111 DAVIS 0.287
DT-Grabber-wI Berkeley 0.078 DAVIS 0.200

Table 4.3: For each method and dataset, the average response time in seconds per inter-
action.

Method Dataset IoU Dataset IoU

fBRS Berkeley 0.938± 0.023 DAVIS 0.915± 0.071
fBRS-Grabber-wI Berkeley 0.946± 0.014 DAVIS 0.916± 0.122
fBRS-Grabber-wC Berkeley 0.946± 0.012 DAVIS 0.922± 0.105
DT Berkeley 0.925± 0.077 DAVIS 0.913± 0.098
DT-Grabber-wI Berkeley 0.941± 0.027 DAVIS 0.910± 0.125

Table 4.4: For each method and dataset, the mean and standard deviation of IoU consid-
ering only the images that required Grabber.

the IoU of fBRS may be 5% overestimated since the same robot is used for training and

testing [27].

Finally, Figures 4.7(a)-(b) show that the Grabber’s contour has higher adherence to

the object’s border than the segmentation of fBRS, and Figures 4.7(c)-(d) show the same

for DT-Grabber.

4.4 Conclusion

The experiments demonstrate the advantages of integrating Grabber with fBRS and DT.

Similar results should be observed with other methods. We expected better results with

fBRS-Grabber-wC than with fBRS-Grabber-wI , because the use of object saliency maps

can usually improve segmentation, as observed in [67].

Figures 4.8 (a)-(f) show the progress of the object saliency map along with a few

interactions in fBRS. Figure 4.8(c) shows that the map of fBRS is biased to enhance

certain classes (i.e. people). Due to crop and optimization based on the distance maps

of the clicks, fBRS indeed improves the map for the object of interest — the shirt of a

person. Nevertheless, even the initial map in Figure 4.8(c) affects Grabber positively since

its results are better with than without the map for distinct values of ε (Figures 4.8(g)-(l)).

This example also shows that a higher value of ε would improve convergence in fBRS-

Grabber-wC and fBRS-Grabber-wI , when compared to the best value of ε estimated in

SBD. Additionally, the user experience can be considerably improved when using Grabber

to speed up convergence in interactive segmentation.
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(a) (b)

(c) (d)

Figure 4.7: Crocodile image segmented with (a) fBRS (cyan contour) from internal (yel-
low) and external (red) clicks. Grabber provides (b) higher boundary adherence with
less effort (red contour, previous contour in cyan). (c) Segmentation with DT from ob-
ject (yellow) and background (red) markers. (d) Correction with Grabber (red contour,
previous contour in cyan).
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.8: (a) Original image with ground-truth contour. (b) fBRS’s segmentation with
one click and (c) its saliency map biased to people. (d-f) Saliency map progress given
additional clicks. (g) Grabber’s anchors (blue), for ε = 100, and its results (h) without and
(i) with the saliency map from (c), requiring 1 less interaction than fBRS. (j) Grabber’s
anchors (blue), for ε = 1000, and its results (k) without and (l) with the saliency map
from (c), requiring 5 less interactions than fBRS.
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Chapter 5

Large-Scale Segment Annotation in the

Feature Space

As described in previous chapters, Convolutional Neural Networks (CNNs) can achieve

excellent results on image classification, image segmentation, pose detection, and other

images/video-related tasks [83, 81, 94, 40, 163], at the cost of an enormous amount of

high-quality annotated data and processing power. Thus, interactive image segmentation

with reduced user effort is of primary interest to create such datasets for CNNs’ train-

ing. Concerning image segmentation tasks, the annotations are pixel-wise labels, usually

created through interactive image segmentation methods [126, 65, 34, 143, 75, 158] or by

specifying polygons in the object boundaries [144].

Recent interactive image segmentation methods based on deep learning can signifi-

cantly reduce user effort by performing object delineation from a few clicks, sometimes in

a single user interaction [99, 101, 173]. However, such deep neural networks do not take

user input as hard constraints and so cannot provide enough user control. Novel methods

can circumvent this issue by refining the neural network’s weights while enforcing the

correct results on the annotated pixels [89, 150, 93]. Their results are remarkable for

foreground segmentation. Still, in complex cases or objects unseen during training, the

segmentation may be unsatisfactory even by extensive user effort.

The big picture in today’s image annotation tasks is that thousands of images with

multiple objects require user interaction. While they might not share the same visual

appearance, their semantics are most likely related. Hence, thousands of clicks to obtain

thousands of segments with similar contexts do not sound as appealing as before.

This chapter presents a scheme for interactive large-scale image annotation that allows

user to label many similar segments at once. It starts by defining segments from mul-

tiple images and computing their features with a neural network pre-trained in another

domain. The user annotation is based on feature space projection, Figure 5.1, and as it

progresses, the similarities between segments are updated with metric learning, increasing

the discrimination among classes, and further reducing the labeling burden.
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Figure 5.1: Our approach to interactive image segmentation: candidate segments are
sampled from the dataset and presented in groups of similar examples to the user, who
annotates multiple segments in a single interaction.

Contributions

To our knowledge, this is the first interactive image segmentation methodology that does

not receive user input on the image domain. Hence, our goal is not to beat the state-

of-art of interactive image segmentation but to demonstrate that other forms of human-

machine interaction, notably feature space interaction, can benefit the interactive image

segmentation paradigm and can be combined with existing methods to perform more
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efficient annotation.

5.1 Related Works

In this chapter, we address the problem of assigning a label (i.e. class) to every pixel

in a collection of images, denoted as image annotation in the remaining of the paper.

This is related to the foreground (i.e. region) segmentation microtasks, where the region

of interest has no specific class assigned to it, and the delineation of the object is of

primary interest — in standard image annotation procedures, this is the step preceding

label assignment [144].

Current deep interactive segmentation methods, from click [170, 99, 111, 93, 89, 150,

101], bounding-box [111, 27, 173] to polygon-based approaches [39, 8, 102] address this

microtask of segmenting and then labeling each region individually to generate annotated

data.

A minority of methods segment multiple objects jointly; to our knowledge, in deep

learning, this has been employed only once [9]; And in classical methods, a hand-full could

do this efficiently [49, 64, 75].

Fluid annotation [15] proposes a unified human-machine interface to perform the com-

plete image annotation; the user annotation process starts from the predictions of an

existing model, requiring user interaction only where the model lacks accuracy, further

reducing the annotation effort. The user decides which action it will perform at any

moment without employing active learning (AL). Hence, the assumption is that the user

know and will take the actions that will decrease the annotation budget the most.

This approach falls in the Visual Interactive Labeling (VIAL) [29] framework, where

the user interface should empower the users, allowing them to decide the optimal move

to perform the task efficiently. Extensive experiments [28] have shown that this paradigm

is as competitive as AL and obtains superior performance when starting with a small

amount of annotated data.

Inside the VIAL paradigm, feature space projection has been employed for user guid-

ance in semi-supervised label propagation [26, 25] and for object detection in remote-

sensing [160]. However, its use for image segmentation has not been explored yet.

Other relevant works and their relationship with our methodology are further discussed

in the next section along with the method presentation.

5.2 Proposed Method

Our methodology allows the user to annotate multiple classes jointly and requires lower

effort when the data are redundant by allowing multiple images to be annotated at once.

Multiple image annotation is done by extracting candidate regions (i.e. segments) and

presenting them simultaneously to the user. The candidate segments are displayed closer

together according to their visual similarity [145] for the label assignment of multiple

segments at once. Hence, user interaction in the image domain is only employed when

necessary — not to assign labels but to fix incorrect segments. Since, this action is the
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one that requires the most user effort and has been the target of several weakly-supervised

methodologies [17, 176, 177, 86] that try to avoid it altogether. Therefore, the proposed

approach is based on the following pillars:

• Segment annotation problem should be evaluated as a single task [15]. While divid-

ing the problem into microtasks is useful to facilitate the user and machine interac-

tion, they should not be treated independently since the final goal is the complete

image annotation.

• The human is the protagonist in the process, as described in the VIAL process [29],

deciding which action minimizes user effort for image annotation while the machine

assists in well-defined microtasks.

• Annotation in the image domain is burdensome; thus, it should be avoided, but not

neglected, since perfect segmentation is still an unrealistic assumption.

• The machine should assist the user initially, even when no annotated examples are

present [28], and as the annotation progresses, labeling should get easier because

more information is provided.

5.2.1 Overview

The proposed methodology is summarized in Figure 5.2 and each component is described

in the subsequent sections.

The user interface is composed of two primary components, the projection View and

the Image View. Red contours in Figure 5.2 delineate which functionalities are present in

these widgets. The projection View is concerned with displaying the segments arranged

in a canvas (Figure 5.1), enabling the user to interact with it: assigning labels to clus-

ters, focusing on cluttered regions, and selecting samples for segmentation inspection and

correction in the image domain.

Image View displays the image containing a segment selected in the canvas. It is

highlighted to allow fast component recognition among the other segments’ contours.

Samples already labeled are colored by class. This widget allows further user interaction

to fix incorrect delineation, further discussed in Section 5.2.7. Segment selection also works

backwardly, when a region is selected in the Image View, its feature space neighborhood is

focused on the projection canvas, accelerating the search for relevant clusters by providing

a mapping from the image domain to the projection canvas.

The colored rectangles in Figure 5.2 represent data processing stages: yellow represents

fixed operations that are not updated during user interaction, red elements are updated as

the user annotation progresses, and the greens are the user interaction modules. Arrows

show how the data flows in the pipeline.

The pipeline works as follows, starting from a collection of images, their gradients are

computed to partition each image into segments, which will be the units processed and

annotated in the next stages.

Since we wish to cluster together similar segments, we must define a similarity criterion.

Therefore, for each segment, we obtain their deep representation (i.e. features ). Their
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Figure 5.2: The proposed feature space annotation pipeline.

Euclidean distances are used to express this information — they are more dissimilar as

they are further apart in the feature space.

The next step concerns the notion of similarity between segments as presented and

perceived by the user. We propose communicating this information to the user by dis-

playing samples with similar examples in the same neighborhood. Hence, the segments’

features are used to project them into the 2D plane while preserving, as best as possible,

their relative feature space distances.

The user labeling process is executed in the 2D canvas by defining a bounding-box

and assigning the selected label to the segments inside it. As the labeling progresses,

their deep representation is updated using metric learning, improving class separability,

enhancing the 2D embedding, thus, reducing the annotation effort. We refer to [29] for

a review in visual interactive labeling and [145] for interactive dimensionality reduction

systems.

This pipeline relies only upon the assumption that it is possible to find meaningful

candidate segments from a set of images and extract discriminant features from them

to cluster together similar segments. Even though these problems are not solved yet,

existing methods can satisfy these requirements, as they are validated in our study of

parts (Section ??).
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5.2.2 Edge Detection and Image Partition

Edge detection and watershed-based image partition are operations of the first step of the

pipeline, obtaining initial candidate segments. In the ideal scenario, the desired regions

are represented by a single connected component, requiring no further user interaction

besides labeling.

However, obtaining meaningful regions is a challenging and unsolved problem. Desired

segments vary from application to application. On some occasions, users wish to segment

humans and vehicles in a scene, while in the same image, other users may desire to

segment the clothes and billboards. Thus, the proposed approach has to be class agnostic

and enables the user to obtain different segment categories without effort.

The usual approach computes several solutions (e.g . Multiscale Combinatorial Group-

ing (MCG) [136]) and employs a selection policy to obtain the segments of interest.

However, it does not guarantee disjoint regions, and it generates thousands of candidates,

further complicating the annotation process.

Given that segments should be disjoint, and they are also task dependent, we chose

to employ hierarchical segmentation techniques for this stage, described in Section 2.4 of

Chapter 2. Most of the relevant literature for this problem aims at obtaining the best

gradient (edge saliency) to compute segmentation.

In Convolutional Oriented Boundaries [112], a CNN predicts multiple boundaries in

multiple scales and orientations and are combined into an ultrametric contour map to

perform the hierarchical segmentation – Refer to [129, 130] to review the duality between

contours and hierarchies.

Recently, various CNN architectures for edge estimation were developed [168, 106, 59,

80, 103] as reviewed in Section 2.5.2 of Chapter 2, where the multi-scale representation is

fused into a single output image. In such methods, boundaries that appear in finer scales

present lower values than the clearest ones.

While segmentation can be computed from the gradient information directly, per-

forming it in learned features has shown to be competitive. Isaacs et al . [87] propose a

novel approach to use deep features to improve class agnostic segmentation, learning a

new mapping for the pixels values, without considering any class information and further

separating their representation apart.

Other tasks also employ edge estimation to enhance their performance, notably Pool-

Net [105] switches between saliency object prediction and edge estimation in the training

loop with the same architecture to obtain saliency with greater boundary adherence. We

noticed that this approach produces less irrelevant boundaries for image segmentation;

thus, we chose this method for our experimental setup.

We opted to employ the flexible hierarchical watershed framework [53, 52] for de-

lineating candidate segments on the gradient image (i.e. edge detection) estimated by

PoolNet [105] architecture. The hierarchical watershed allows manipulation of the region

merging criterion, granting the ability to rapidly update the segments’ delineation. Be-

sides, hierarchical segmentation lets the user update segments without much effort (e.g .

obtaining a more refined segmentation by reducing the threshold, but as a trade-off, the

number of components increases). Further, a watershed algorithm can also interactively
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correct the delineated segments (Section 5.2.7).

Starting from a group of N images without annotations, {I1, I2, ... , IN}, their gradient

images are computed. For each gradient Gi, i ∈ [1, N ], its watershed hierarchy is built and

disjoint segments {Si,1, . . . , Si,ni
} are obtained by thresholding the hierarchy. The required

parameters (threshold and hierarchy criterion) are robust and easy to be defined by visual

inspection on a few images. More details about that are presented in Section 5.2.7.

5.2.3 Feature Extraction

Before presenting the regions arranged by similarity, a feature space representation where

dissonant samples are separated must be computed. For that, we refer to CNN archi-

tectures for image classification tasks, without their fully connected layers [107] used for

image classification.

Each segment is treated individually; we crop a rectangle around the segment in the

original image, considering an additional border to not impair the network’s receptive

field. In this rectangle, pixels that do not belong to the segment are zeroed out. Other-

wise, segments belonging to the same image would present similar representations. The

segment images are then resized to 224× 224 and forwarded through the network, which

outputs a high-dimensional representation, φi,j. In this instance φi,j ∈ R
2048, for each Si,j.

We noticed that processing the segment images without resizing them did not produce

significant benefits and restricted the use of large batches’ efficient inference.

Since our focus is on image annotation, where labeled data might not be readily avail-

able, feature extraction starts without fine-tuning and it is only optimized as the labeling

progresses. Any CNN architecture can be employed, but computational performance is

crucial for the user interactivity. We use the High-Resolution Network (HRNet) [163]

architecture, pre-trained on ImageNet without the final fully connected layers. It is pub-

licly available with multiple depths, and its performance is superior to other established

works for image classification, such as ResNet [83]. During the development of this work,

other architectures were proposed [157, 138], significantly improving the classification per-

formance while using comparable computing resources. They were not employed in our

experimental setup, but they might improve the presented results.

5.2.4 Dimensionality Reduction

Dimensionality reduction aims at reducing a feature space from a higher to a lower di-

mension with similar characteristics. Some methods enforce the global structure (e.g .

PCA); other approaches, such as non-linear methods, focus on local consistency, penaliz-

ing neighborhood disagreement between the higher and lower dimensional spaces.

In some applications, the reduction aims to preserve the original features ’ character-

istics; in our case, we wish to facilitate the annotation as much as possible. Hence, a

reduction that groups similar segments and segregates dissonant examples is more bene-

ficial than preserving the original information.

For this, we employed a more recent approach, known as UMAP [120], for the following

reasons: the projection is computed faster than t-SNE; samples can be added without
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fitting the whole data; its parameters seems to provide more flexibility to control the

projection scattering — enforcing local or global coherence — and most importantly, it

allows to use labeled data to enforce consistency between samples of the same class while

still allowing unlabeled data to be inserted.

Note that dimensionality reduction is critical to the whole pipeline because it arranges

the data to be presented to the user, where most of the interaction will occur.

The 2D embedding can produce artifacts, displaying distinct segments clustered to-

gether due to the trade-off between global and local consistency even though they might

be distant in the higher-dimensional feature space. Therefore, the user can select a subset

of samples and interact with their local projection in a pop-up window, where the projec-

tion parameter is tuned to enforce local consistency. The locally preserving embedding

(Figure 5.3) separates the selected cluttered segments (in pink) into groups of similar

objects (tennis court, big households, small households, etc.), making it easier for label

assignment.

Figure 5.3: Local re-projection example: Global projection with a region highlighted in
blue; A subset of segments is selected by the user, in pink; Their local embedding is
computed for a simpler annotation.

On images, CNN’s features obtain remarkable results consistent with the human notion

of similarity between objects. Considering that an annotator evaluates images visually,

data projection is our preferred approach to inform the user about possible clusters, as

explained in the next section. Other visualizations must be explored for other kinds of

data, such as sound or text, where the user would have difficulty to visually exploit the

notion of similarity [29, 145].

5.2.5 Embedding Annotation

Each segment is displayed on their 2-dimensional coordinate, as described in the previous

section. To annotate a set of segments, the user selects a bounding-box around them in

the canvas, assigning the designed label. Hence, each Si,j inside the defined box is assigned

to a label Li,j. Finally, to obtain annotated masks in the image domain, the label Li,j

of a segment Si,j is mapped to its pixels in Ii, resulting in an image segmentation (pixel

annotation).
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Due to several reasons, such as spurious segments or over-segmented objects, a region

could be indistinguishable. Hence, when a single segment is selected in the projection,

its image is displayed in the Image View as presented earlier. This action also works

backwardly, the user can navigate over the images, visualize the current segments, and

upon selection, the segments are focused in the projection view. Thus, avoiding the effort

of searching individual samples in the segment scattering.

Additional care is necessary when presenting a large number of images, mainly if each

one contains several objects, because the number of segments displayed on the canvas may

impair the user’s ability to distinguish their respective classes for annotation. Therefore,

only a subset of the data is shown to the user initially. Additional batches are provided as

requested while the labeling and the embedding progress, reducing the annotation burden.

5.2.6 Metric Learning

The proposed pipeline is not specific to any objects’ class and does not require pre-

training, but as the annotation progresses, the available labels can be employed to reduce

user effort — less effort is necessary when the clusters are homogeneous and not spread

apart.

For that, we employ a metric learning algorithm. Figure 5.4 shows an example of

how metric learning can make clusters of a same class more compact and better separate

clusters from distinct classes in our application.

In our pipeline we employed the classical large-margin loss [165], presented in Sec-

tion 2.6 of Chapter 2, using our previously mentioned feature extractor network. We

here followed Musgrave et al . [127], which showed that some novel methods are prone to

overfitting and require more laborious parameter tuning.

5.2.7 Segment Correction

Since segment delineation is not guaranteed to be perfect, component correction is cru-

cial, especially for producing ground-truth data, where pixel-level accuracy is of uttermost

importance. Hence, segments containing multiple objects (under segmentation) are cor-

rected by positive and negative clicks, splitting the segment into two new regions according

to the user’s cues.

Here we use a classical graph-based algorithm as we focus mainly on the feature space

annotation; more modern CNN-based approaches can be employed on a real scenario.

Given an under-segmented region Si,j, we define an undirected graph G = (V,E,w)

where the vertices V are the pixels in Si,j, the edges connect 4-neighbors, constrained to

be inside Si,j, and each edge (p, q) ∈ E is weighted by w(p, q) = (Gi,j(p) + Gi,j(q))/2. A

segment partition is obtained by the IFT [64] algorithm, from Section 2.3, for the labeled

watershed operator given two sets of clicks Cpos and Cneg as defined by the user. This

operation offers full control over segmentation, is fast, and improves segment delineation.

Further, the user can change the hierarchical criterion for watershed segmentation,

preventing interactive segment correction in multiple images. For example, in an image

overcrowded with irrelevant small objects, the user can bias the hierarchy to partition
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(a) (b)

(c)

Figure 5.4: Example of metric learning in the Rooftop dataset: (a) Segment arrangement
from an initial batch (10 images). (b) Displacement after labeling and employing metric
learning, foreground (rooftops) in blue and background in red. (c) projection with addi-
tional unlabeled data (plus 20 images). Most rooftops’ segments are clustered together
(the cyan box). The magenta box indicates clusters from mixed classes and spurious seg-
ments. They suggest where labels are required the most for a next iteration of labeling
and metric learning. The remaining clusters can be easily annotated.
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larger objects by defining the hierarchy ordering according to the objects’ area in the

image domain, filtering out the spurious segments, as explained in Section 2.4.

Therefore, the Image View interface allows inspection of multiple hierarchical seg-

mentation criteria and their result for given a threshold. The segments are recomputed

upon user confirmation, maintaining the labels of unchanged segments. Novel segments

go through the pipeline for feature extraction and projection into the canvas.

5.3 Experiments

This section starts by describing the datasets chosen for the experiments and the imple-

mentation details for our approach. Since our method partitions the images into segments

and solves the simultaneous annotation of multiple objects by interactive labeling of sim-

ilar segments’ clusters, we present a study of two ideal scenarios to evaluate each main

step individually. In the first experiment, the images are partitioned into perfect seg-

ments constrained to each object’s mask, the rest of the pipeline is executed as proposed,

evaluating the feature space annotation efficiency. Next, we assess the image partition by

assuming optimal labeling, thus, only investigating the initial segmentation performance.

Hence, the study of parts evaluates the limitations of the initial unsupervised hierarchical

segmentation techniques, description with metric learning, and projection. Subsequently,

we compare with state-of-the-art methods and present the quantitative and qualitative

results.

Note that our goal goes beyond showing that the proposed method can outperform

others. We point a research direction that exploits new ways of human-machine interaction

for more effective data annotation.

Typically, a robot user executes the deep interactive segmentation experiments; in

contrast, our study is conducted by a volunteer with experience in interactive image

segmentation. Thus we are taking into account the effort required to locate and identify

objects of interest.

5.3.1 Datasets

We selected image datasets from video segmentation, co-segmentation, semantic segmen-

tation tasks, and a remote-sensing dataset from collaborator’s laboratory that deviates

from standard computer vision tasks.

1. CMU-Cornell iCoSeg [22]: It contains 643 natural images divided into 38 groups.

Within a group, the images have the same foreground and background but are seen

from different point-of-views.

2. DAVIS [133]: It is a video segmentation dataset containing 50 different sequences.

Following the same procedure as in [89], multiple objects in each frame were treated

as a single one, and the same subset of 345 frames (10 % of the total) was employed.

3. Rooftop [156]: It is a remote sensing dataset with 63 images, and in total containing

390 instances of disjoint rooftop polygons.
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4. Cityscapes [48]: It is a semantic segmentation dataset for autonomous driving re-

search. It contains video frames from 27 cities divided into 2975 images for training,

500 for validation, and 1525 for testing. The dataset contains 30 classes (e.g . roads,

cars, trucks, poles), we evaluated using only the 19 default classes.

5. VizFracSet [1]: It is a preliminary geological dataset of rock’s fractures, it consists of

a single RGB image of 4044 x 2915 pixels acquired by an aerial drone from Jandaíra,

Brazil. This large image was split into 40 equally sized tiles for analysis. There are

two set of labels of the fractures (one was produced to fix disagreements with the

existing official annotations).

5.3.2 Implementation details

We implemented a user interface in Qt for Python. To segment images into components,

we used Higra [134, 2] and the image gradients generated with PoolNet [4]. We com-

puted gradients over four scales, 0.5, 1, 1.5, and 2, and averaged their output to obtain

a final gradient image. For the remaining operations, including the baselines, we used

NumPy [79], the PyTorch Metric Learning package [128] and the available implementa-

tions in PyTorch [132].

For segment description with metric learning, we used the publicly available HRNet-

W18-C-Small-v1 [6] configuration pre-trained on the ImageNet dataset. In the metric-

learning stage, the Triplet-Loss margin is fixed at 0.05. At each call, the embedding is

optimized through Stochastic Gradient Descent (SGD) with momentum of 0.8 and weight

decay of 0.0005 over three epochs with 1000 triplets each. The learning rate starts at 0.1

and, at each epoch, it is divided by 10.

We used UMAP [120] with 15 neighbors for feature projection and a minimum distance

of 0.01 in the main canvas. The zoom-in canvas used UMAP with five neighbors and 0.1

minimum distance; when labels were available, the semi-supervised trade-off parameter

was fixed at 0.5, penalizing intra-class and global consistencies equally.

5.3.3 Study of Parts

Our approach depends on two main independent steps: the image partition into segments

and the interactive labeling of those regions. The inaccuracy of one of them would signifi-

cantly deteriorate the performance of the feature space annotation for image segmentation

labeling. Therefore, we present an study of parts that considers two ideal scenarios: (a)

interactive projection labeling of perfect segments and (b) image partition into segments

followed by optimal labeling.

In (a), the user annotates segments from a perfect image partition inside and outside

the objects’ masks. Hence, every segment will always belong to a single class. Table 5.1

reports the results. The Intersection over Union (IoU) distribution is heavily right-skewed,

as noticed from the differences between average IoU and median IoU, indicating that most

segments were labeled correctly. Visual inspection revealed that user annotation errors

occurred only in small components. Table 5.1 also reports the total time (in seconds) spent

annotating (user) and processing (machine), starting from the initial segment projection
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Dataset Avg. IoU Median IoU Time (s)

iCoSeg 95.07 99.96 5.32
DAVIS 98.54 99.97 7.82
Rooftop 95.10 99.99 3.96

Table 5.1: Average IoU, median IoU, average total processing time in seconds per image.

Dataset Avg. IoU Median IoU

iCoSeg 84.15 91.86
DAVIS 82.46 88.50
Rooftop 75.14 76.77

Table 5.2: Automatic segmentation results with their respective dataset.

presented to the user. It indicates that feature space projection annotation with metric

learning is effective for image segmentation annotation.

In (b), we measure the IoU of the watershed hierarchical cut using a fixed parameter

— the threshold of 1000 with the volume criterion. The segments were then labeled

by majority vote among the true labels of their pixels. Table 5.2 shows the quality of

segmentation, which imposes the upper bound to the quality of the overall projection

labeling procedure if no segment correction was performed.

For reference, Click Carving [88] reports an average IoU of 84.31 in the iCoSeg dataset

when selecting the optimal segment (i.e. highest IoU among proposals) from a pool of

approximately 2000 segment proposals per image, produced with MCG [136]. In contrast,

we obtain an equivalent performance of 84.15 with a fixed segmentation with disjoints

candidates only.

Figure 5.5 presents example of the candidate segments on the three datasets.

5.3.4 Quantitative analysis using baselines

Since existing baselines report scores only in a very limited scenario, we executed our own

experiments according to the code availability; Them being, f-BRS-B [150] (CVPR2020)

and FCANet [101] (CVPR2020), both with Resnet101 backbone, with their publicly

available weights [5, 7] trained on the SBD [78] and SBD plus PASCAL VOC [61] datasets,

respectively. We are not comparing with IOG [173] (CVPR2020) because we could not

reproduce the results (subpar performance) with their available code and weights, and [93]

(ECCV2020) is not publicly available. The results are reported over the final segmentation

mask, given a sequence of 3 and 5 clicks.

Table 5.3 report the average IoU and the total time spent in annotation. For click-

based methods, the interaction time was estimated as 2.4s for the initial click and 0.9s

for additional clicks [23].

We achieve comparable accuracy results with state-of-the-art methods while employ-

ing less sophisticated segmentation procedures, qualitative results are presented in Fig-

ures 5.6- 5.8. Despite this, existing methods require less time to annotate these datasets;
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: Candidate segments from study of parts. First row is from the iCoSeg dataset,
second is from DAVIS and the last from Rooftop.

this is due to them being specialized in the foreground annotation microtask, while our

approach wastes time annotating the background — this is exacerbated on the DAVIS

dataset where a background object might be a category equal to the foreground.

The following experiment evaluates our performance on a semantic segmentation,

where labeling the whole image is the final goal, not just the microtask of delineating

a single object.

5.3.5 Qualitative analysis of semantic segmentation

To verify the proposed approach in a domain-specific scenario, we evaluate its performance

on Cityscapes [48]. Since the true labels of the test set are not available, we took the

same approach as [39], by testing on the validation set. Further, the annotation quality

was evaluated on 98 randomly chosen images (about 20% of the validation set).

PoolNet was optimized based on the boundaries of the training set’s true labels for

five epochs using the Adam optimizer, a learning rate of 5e−5, weight decay of 5e−4, and

a batch of size 8. Predictions were performed on a single scale. The fine-tuned gradient

ignores irrelevant boundaries, reducing over segmentation.

The original article reports an agreement (i.e. accuracy) between annotators of 96%.

We obtained an agreement of 91.5% with the true labels of the validation set (Figure 5.9),
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Figure 5.6: The magenta boundaries delineate regions with foreground labels for the
ground-truth data, our method, and the baselines using 5 clicks per image on the iCoSeg
dataset. Figure (i) shows that FCANet has difficulties when segmenting multiples in-
stances, as mentioned in their original article.
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Dataset iCoSeg DAVIS Rooftop

Method IoU Time (s) IoU Time (s) IoU Time (s)

f-BRS (3 clicks) 79.82 4.2 79.87 4.2 62.57 4.2
f-BRS (5 clicks) 82.14 6 82.44 6 74.53 6
FCANet (3 clicks) 84.63 4.2 82.44 4.2 65.99 4.2
FCANet (5 clicks) 88.00 6 86.63 6 81.38 6
Ours 84.29 5.96 84.53 8.74 77.28 7.02

Table 5.3: Average IoU and time over images, except for Rooftop, where time is computed
over instances. For robot user experiments, with multiple budgets (3 and 5 clicks), time
was estimated according to this study [23]. Our method obtains comparable accuracy,
but it spends additional time annotating foreground and background. The Cityscapes
experiment shows our results on a more realistic scenario where every pixel is labeled (not
a microtask).
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Figure 5.7: The magenta boundaries delineate regions with foreground labels for the
ground-truth data, our method, and the baselines using 5 clicks per image on the DAVIS
dataset.
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Figure 5.8: The magenta boundaries delineate regions with foreground labels for the
ground-truth data, our method, and the baselines using 5 clicks per instance on the
Rooftop dataset.
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Figure 5.9: Cityscapes result, each column is a different image, row indicates which kind.

while spending less than 1.5% of their time — i.e. our experiment took 1 hour and 58

minutes to annotate the 98 images, while to produce the same amount of ground-truth

data took approximately 6.1 days (average of 1.5 hour per image [48]) — about 74.75

times faster than the original procedure. These 98 images contain in total 6500 default

classes’ polygons (i.e., instances). Thus, with the estimate of 6 secs per instance, FCANet

would take 10 hours and 50 minutes to label them.

5.3.6 Qualitative analysis of fracture annotation

The fracture dataset [1] (Figure 5.10) deviates significantly from the standard computer

vision datasets even when considering remote sensing tasks, because of the very specific

landscape, and only a specialist is able to evaluate it with utmost confidence, while in

common tasks most users are able to distinguish the different objects in the scenes with

very little training. Moreover, the object of interest is not similar to any examples present

in the training set of existing models. Thus, the performance of transfer learning is greatly

impaired, this is noted in Figure 5.11, where the edge estimation, which worked in all

of the previous datasets, fails to distinguish relevant edges resulting a poor watershed

segmentation. Therefore, we resorted to a superpixel algorithm that operates directly

in the image color space [24]. Note that the problem is not the fracture’s edges are

not detected by the network, is that edges that are not relevant to our problem are also

detected at the same rate and intensity. Beyond the unsupervised segmentation technique

the same methodology was employed.
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Figure 5.10: Fracture image example: (a) Original image with pink line segments over
the fractures; (b) Red manual segmentation overlapping the fractures and its respective
mask in (c). Image from [1].

(a) Original (b) Edge detection

(c) Hierarchical watershed (d) DISF

Figure 5.11: The edge detection (b) of the original image (a) contains several irrelevant
boundaries, undermining the watershed (c) accuracy. The DISF (d) obtains a significantly
better segmentation even with a lower number of superpixels.
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(a) Label #1 (b) Label #2 (c) Our results

(d) Label #1 (e) Label #2 (f) Our results

Figure 5.12: Qualitative results of fracture annotations; The first row presents a tile where
the methodology was successful, note that there is a disagreement between the labels and
it is the same tile from the previous figure. The second row shows a case where the user
missed annotating smaller regions.

We obtained an accuracy of 0.917±+/−0.048 when comparing to the original labeling

and 0.922 ± 0.046 to the other annotation. The user took 12 minutes and 6 seconds

to annotate the 40 tiles, averaging 18.15 seconds per tile. Figure 5.12 presents some

qualitative results.

5.4 Discussion

We presented a novel interactive image segmentation paradigm for simultaneous annota-

tion of segments from multiple images in their deep features ’ projection space. Despite

employing less sophisticated segmentation methods, it achieves comparable performance

with more modern approaches. Moreover, individual modules can be swapped to obtain

optimal performance (e.g ., FCANet for segmentation correction, unifying the embedding

and feature extraction with Parametric UMAP [146]).

We think that this work leads to several opportunities for combining the whole pipeline

into a holistic segmentation procedure, where redundant samples are labeled at once, and

annotation on the image domain occurs only when necessary. In a real scenario, we
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suggest letting a leading user interact with the projection to evaluate existing annotated

data, model performance (segments clustering), and, when necessary, delegating segment

correction to workers, as it is currently done in existing annotation procedures, diminishing

the total images annotated on the image domain.
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Chapter 6

Conclusion and Future Work

In this thesis, we studied multiple approaches for interactive image segmentation, starting

from graph-based methods to the recent deep learning-based techniques. We identified

that additional information could be incorporated into the graphical model as the seg-

mentation progresses by performing the segmentation through a region growing from the

user cues and at each growth step updating the arc weight at the region’s frontier; this

approach can be implemented efficiently using dynamic programming and showed supe-

rior performance over existing graph-based techniques, Chapter 3. These results indicate

that more sophisticated algorithms that reestimate its model as the segmentation progress

could result in more significant improvements. For example, an extension of the power

watershed where the random walk step uses the information from the currently segments

regions.

We recognized that despite the incredible performance of deep interactive segmenta-

tion networks, they are not efficient for obtaining the most accurate results. Hence, we

proposed Grabber (Chapter 4) to assist the finalization of the annotation when accuracy

is of the utmost interest. Starting from any existing mask (i.e. prediction computed from

a CNN), it provides anchor points along its boundaries for user editing; as the user moves

the anchors, its boundaries segments adhere to its position, resulting in an accurate de-

lineation while providing user control and leveraging prior information as a saliency map

without degenerating the initial segmentation.

Last but not least, we implemented a proof of concept of a novel framework for an-

notating multiple segments at once, Chapter 5. Given an unlabeled set of images, it

extracts multiple segments and their features; the segments are arranged in a 2D canvas

and presented to the user, such that similar segments are nearby and can be labeled with

a single action; as the annotation progresses, the arrangement of the segments is updated

to cluster the existing labels better, further reducing the required annotation effort. Our

implementation showed comparable results to existing deep learning techniques for fore-

ground and background annotation and significantly reduced the annotation time of data

for semantic segmentation tasks with greater redundancy between samples at a small cost

over the final accuracy.

We think the latter method serves as a starting point for novel methodologies for

annotating segments at scale. Notably, active learning could be inserted into the system

to predict the label of segments where the labeling is trivial and recommending to the user
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which samples would improve the predictions the most. Moreover, the approach could be

explored in scenarios with simultaneous annotation from multiple users.
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